
Package: spAbundance (via r-universe)
October 25, 2024

Type Package

Title Univariate and Multivariate Spatial Modeling of Species
Abundance

Version 0.2.1

Description Fits single-species (univariate) and multi-species
(multivariate) non-spatial and spatial abundance models in a
Bayesian framework using Markov Chain Monte Carlo (MCMC).
Spatial models are fit using Nearest Neighbor Gaussian
Processes (NNGPs). Details on NNGP models are given in Datta,
Banerjee, Finley, and Gelfand (2016)
<doi:10.1080/01621459.2015.1044091> and Finley, Datta, and
Banerjee (2022) <doi:10.18637/jss.v103.i05>. Fits
single-species and multi-species spatial and non-spatial
versions of generalized linear mixed models (Gaussian, Poisson,
Negative Binomial), N-mixture models (Royle 2004
<doi:10.1111/j.0006-341X.2004.00142.x>) and hierarchical
distance sampling models (Royle, Dawson, Bates (2004)
<doi:10.1890/03-3127>). Multi-species spatial models are fit
using a spatial factor modeling approach with NNGPs for
computational efficiency.

License GPL (>= 3)

Encoding UTF-8

LazyData true

URL https://www.doserlab.com/files/spabundance-web

https://groups.google.com/g/spocc-spabund-users

BugReports https://github.com/biodiverse/spAbundance/issues

Depends R (>= 3.5.0)

Imports stats, coda, abind, RANN, lme4, foreach, doParallel, methods

Suggests testthat

Repository https://biodiverse.r-universe.dev

RemoteUrl https://github.com/biodiverse/spabundance

1

https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.18637/jss.v103.i05
https://doi.org/10.1111/j.0006-341X.2004.00142.x
https://doi.org/10.1890/03-3127
https://www.doserlab.com/files/spabundance-web
https://groups.google.com/g/spocc-spabund-users
https://github.com/biodiverse/spAbundance/issues

2 Contents

RemoteRef HEAD

RemoteSha a49ef64dab6c5f1c4f75d2d48c8498d79b1d5b9e

Contents
abund . 4
bbsData . 8
bbsPredData . 9
dataNMixSim . 10
DS . 12
fitted.abund . 16
fitted.DS . 17
fitted.lfMsAbund . 18
fitted.lfMsDS . 19
fitted.lfMsNMix . 19
fitted.msAbund . 20
fitted.msDS . 21
fitted.msNMix . 22
fitted.NMix . 23
fitted.sfMsAbund . 24
fitted.sfMsDS . 24
fitted.sfMsNMix . 25
fitted.spAbund . 26
fitted.spDS . 27
fitted.spNMix . 27
fitted.svcAbund . 28
fitted.svcMsAbund . 29
hbefCount2015 . 30
lfMsAbund . 31
lfMsDS . 36
lfMsNMix . 42
msAbund . 47
msDS . 52
msNMix . 58
neonDWP . 63
neonPredData . 65
NMix . 65
ppcAbund . 70
predict.abund . 72
predict.DS . 75
predict.lfMsAbund . 79
predict.lfMsDS . 82
predict.lfMsNMix . 86
predict.msAbund . 89
predict.msDS . 92
predict.msNMix . 95
predict.NMix . 98

Contents 3

predict.sfMsAbund . 101
predict.sfMsDS . 105
predict.sfMsNMix . 109
predict.spAbund . 113
predict.spDS . 116
predict.spNMix . 120
predict.svcAbund . 124
predict.svcMsAbund . 127
sfMsAbund . 131
sfMsDS . 137
sfMsNMix . 144
simAbund . 151
simDS . 153
simMsAbund . 157
simMsDS . 160
simMsNMix . 163
simNMix . 167
spAbund . 170
spDS . 175
spNMix . 181
summary.abund . 186
summary.DS . 187
summary.lfMsAbund . 188
summary.lfMsDS . 189
summary.lfMsNMix . 190
summary.msAbund . 191
summary.msDS . 192
summary.msNMix . 193
summary.NMix . 194
summary.sfMsAbund . 195
summary.sfMsDS . 196
summary.sfMsNMix . 197
summary.spAbund . 198
summary.spDS . 199
summary.spNMix . 200
summary.svcAbund . 201
summary.svcMsAbund . 202
svcAbund . 203
svcMsAbund . 208
waicAbund . 214

Index 218

4 abund

abund Function for Fitting Univariate Abundance GLMMs

Description

Function for fitting univariate abundance generalized linear (mixed) models

Usage

abund(formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, z, and
offset. y is a vector, matrix, or data frame of the observed count values. If a
vector, the values represent the observed counts at each site. If multiple repli-
cate observations are obtained at the sites (e.g., sub-samples, repeated sampling
over multiple seasons), y can be specified as a matrix or data frame with first
dimension equal to the number of sites (J) and second dimension equal to the
maximum number of replicates at a given site. covs is a list or data frame con-
taining the variables used in the model. Each list element is a different covariate,
which can be site-level or observation-level. Site-level covariates are specified
as a vector of length J (or column in a data frame), while observation-level co-
variates are specified as a matrix or data frame with the number of rows equal
to J and number of columns equal to the maximum number of replicate obser-
vations at a given site. For zero-inflated Gaussian models, the tag z is used to
specify the binary component of the zero-inflated model and should have the
same length as y. offset is an offset to use in the abundance model (e.g., an
area offset). This can be either a single value, a vector with an offset for each
site (e.g., if survey area differed in size), or a site x replicate matrix if more than
one count is available at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
kappa, sigma.sq.mu, and tau.sq. The value portion of each tag is the parame-
ter’s initial value. sigma.sq.mu is only relevant when including random effects
in the model. kappa is only relevant when family = 'NB'. tau.sq is only rel-
evant when family = 'Gaussian' or family = 'zi-Gaussian'. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

abund 5

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
kappa.unif, sigma.sq.mu.ig, and tau.sq.ig. Abundance (beta) regression
coefficients are assumed to follow a normal distribution. The hyperparameters
of the normal distribution are passed as a list of length two with the first and
second elements corresponding to the mean and variance of the normal distri-
bution, which are each specified as vectors of length equal to the number of
coefficients to be estimated or of length one if priors are the same for all coef-
ficients. If not specified, prior means are set to 0 and prior variances set to 100.
kappa is the negative binomial over-dispersion parameter and is assumed to fol-
low a uniform distribution. The hyperparameters of the uniform distribution are
passed as a vector of length two with the first and second elements correspond-
ing to the lower and upper bounds of the uniform distribution. sigma.sq.mu
are the random effect variances for any abundance random effects, respectively,
and are assumed to follow an inverse Gamma distribution. The hyperparame-
ters of the inverse-Gamma distribution are passed as a list of length two with
first and second elements corresponding to the shape and scale parameters, re-
spectively, which are each specified as vectors of length equal to the number of
random effects or of length one if priors are the same for all random effect vari-
ances. tau.sq is the residual variance for Gaussian (or zero-inflated Gaussian)
models, and it is assigned an inverse-Gamma prior. The hyperparameters of the
inverse-Gamma are passed as a vector of length two, with the first and second
element corresponding to the shape and scale parameters, respectively.

tuning a list with each tag corresponding to a parameter name, whose value defines
the initial variance of the adaptive sampler. Valid tags are beta, beta.star
(the abundance random effect values), and kappa. See Roberts and Rosenthal
(2009) for details. Note that no tuning is necessary for Gaussian or zero-inflated
Gaussian models.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial), 'Poisson', 'Gaussian', and 'zi-Gaussian'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatially-explicit models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

6 abund

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.
save.fitted logical value indicating whether or not fitted values and likelihood values should

be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

... currently no additional arguments

Value

An object of class abund that is a list comprised of:

beta.samples a coda object of posterior samples for the regression coefficients.
kappa.samples a coda object of posterior samples for the abundance overdispersion parameter.

Only included when family = 'NB'.
tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.

Only included when family = 'Gaussian' or family = 'zi-Gaussian'.
y.rep.samples a two or three-dimensional array of posterior samples for the abundance repli-

cate (fitted) values with dimensions corresponding to MCMC samples, site, and
an optional third dimension of replicate.

mu.samples a two or three-dimensional array of posterior samples for the expected abun-
dance samples with dimensions corresponding to MCMC samples, site, and an
optional third dimension of replicate.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the model. Only included if random effects are specified in formula.

beta.star.samples

a coda object of posterior samples for the random effects. Only included if
random effects are specified in formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

abund 7

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Examples

set.seed(1010)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.abund <- length(beta)
mu.RE <- list(levels = c(30),

sigma.sq.mu = c(1.3))
kappa <- 0.5
sp <- FALSE
family <- 'NB'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, family = 'NB')

y <- dat$y
X <- dat$X
X.re <- dat$X.re

covs <- list(int = X[, , 1],
abund.cov.1 = X[, , 2],
abund.cov.2 = X[, , 3],
abund.cov.3 = X[, , 4],
abund.factor.1 = X.re[, , 1])

data.list <- list(y = y, covs = covs)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 100),

kappa.unif = c(0.001, 10))
Starting values
inits.list <- list(beta = 0, kappa = kappa)

tuning <- list(kappa = 0.2, beta = 0.1, beta.star = 0.2)
n.batch <- 5
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- abund(formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3 +
(1 | abund.factor.1),
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,

https://doi.org/10.18637/jss.v067.i01

8 bbsData

tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

bbsData Count data for six warbler species in Pennsylvania, USA

Description

Count data on 6 warblers in Pennsylvania, USA in 2018. Data come from the North American
Breeding Bird Survey. Data indicate the total numer of individuals for each of 6 species counted
at 50 stops along a 40km route (95 routes in the data set). The six species included in the data
set are: (1) American Redstart (AMRE); (2) Blackburnian Warbler (BLBW); (3) Black-throated
Blue Warbler; (4) Black-throated Green Warbler; (5) Hooded Warbler; and (6) Magnolia Warbler.
Covariate data include three bioclimatic variables derived from PRISM. Two landcover variables
(forest cover and developed land cover) come from USGS Earth Resources Observation and Science
(EROS) Center.

Usage

data(bbsData)

Format

bbsData is a list with three elements:

y: a two-dimensional matrix of count data with rows corresponding to species (6) and columns
corresponding to sites (95).

covs: a data frame with 95 rows and 8 columns consisting of covariates for use in modeling relative
abundance.

coords: a numeric matrix with 95 rows and two columns containing the site coordinates. The
proj4string is "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5 +lon_0=-96 +x_0=0 +y_0=0 +da-
tum=NAD83 +units=m +no_defs"

Source

U.S. Geological Survey. Downloaded from https://www.sciencebase.gov/catalog/item/52b1dfa8e4b0d9b325230cd9
on August 25, 2023.

bbsPredData 9

References

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and
Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and pre-
cipitation across the conterminous united states. International Journal of Climatology: a Journal of
the Royal Meteorological Society, 28(15):2031–2064

Ziolkowski Jr., D.J., Lutmerding, M., English, W.B., Aponte, V.I., and Hudson, M-A.R., 2023,
North American Breeding Bird Survey Dataset 1966 - 2022: U.S. Geological Survey data release,
https://doi.org/10.5066/P9GS9K64.

Sohl, T., Reker, R., Bouchard, M., Sayler, K., Dornbierer, J., Wika, S., ... & Friesz, A. (2016).
Modeled historical land use and land cover for the conterminous United States. Journal of Land
Use Science, 11(4), 476-499.

bbsPredData Covariates and coordinates for prediction of relative warbler abun-
dance in Pennsylvania, USA

Description

Bioclimatic and land cover variables extracted at a 12km resolution across the state of Pennsylvania,
USA for use in predicting relative abundance of six warbler species across the state. Land cover
data come from USGS EROS, while climate data come from PRISM.

Usage

data(bbsPredData)

Format

bbsPredData is a data frame with seven columns:

bio2: bioclim variable 2.

bio8: bioclim variable 8.

bio18: bioclim variable 18.

forest: proportion of forest cover within a 5km radius.

devel: proportion of developed land cover within a 5km radius.

x: the x coordinate of the point. The proj4strig is "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5
+lon_0=-96 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs".

y: the y coordinate of the point. The proj4string is "+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=37.5
+lon_0=-96 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs".

10 dataNMixSim

References

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and
Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and pre-
cipitation across the conterminous united states. International Journal of Climatology: a Journal of
the Royal Meteorological Society, 28(15):2031–2064

Sohl, T., Reker, R., Bouchard, M., Sayler, K., Dornbierer, J., Wika, S., ... & Friesz, A. (2016).
Modeled historical land use and land cover for the conterminous United States. Journal of Land
Use Science, 11(4), 476-499.

dataNMixSim Simulated repeated count data of 6 species across 225 sites

Description

A simulated data set of repeated count data for 6 species across 225 sites with a maximum of 3
replicate surveys performed at a given site.

Usage

data(dataNMixSim)

Format

dataNMixSim is a list with four elements:

y: a three-dimensional array of count data with dimensions of species (6), sites (225) and replicates
(3).

abund.covs: a numeric matrix with 225 rows and two columns consisting of a continuous covariate
and a categorical variable which may both influence abundance of the different species.

det.covs: a list of two numeric matrices with 225 rows and 3 columns. Both matrices contain a
continuous covariate that may affect detection probability of the species

coords: a numeric matrix with 225 rows and two columns containing the site coordinates (X and
Y). Note the data are generated across a unit square (i.e., the x and y coordinates are both between
0 and 1).

Examples

set.seed(6)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.rep <- rep(5, J)
n.sp <- 6
Community-level covariate effects
Occurrence
beta.mean <- c(-1, 0.5)

dataNMixSim 11

p.abund <- length(beta.mean)
tau.sq.beta <- c(0.4, 1.2)
Detection
alpha.mean <- c(0, 0.5, 0.8)
tau.sq.alpha <- c(0.2, 1, 1.5)
p.det <- length(alpha.mean)
Random effects
mu.RE <- list()
mu.RE <- list(levels = c(10),

sigma.sq.mu = c(0.5),
beta.indx = list(1))

p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
alpha.true <- alpha
sp <- TRUE
n.factors <- 3
factor.model <- TRUE
phi <- runif(n.factors, 3/1, 3 / .2)
kappa <- runif(n.sp, 0.1, 1)
family <- 'Poisson'

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, kappa = kappa, family = family,

factor.model = factor.model, phi = phi,
cov.model = 'exponential', n.factors = n.factors)

table(dat$N)
apply(dat$N, 1, sum)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.re <- dat$X.re
X.p.re <- dat$X.p.re
coords <- dat$coords
dimnames(coords)[[2]] <- c('X', 'Y')

Package all data into a list
abund.covs <- cbind(X, X.re)
colnames(abund.covs) <- c('int', 'abund.cov.1', 'abund.factor.1')
abund.covs <- abund.covs[, -1]
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
dataNMixSim <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs,

12 DS

coords = coords)

DS Function for Fitting Single-Species Hierarchical Distance Sampling
Models

Description

Function for fitting single-sepcies hierarchical distance sampling models

Usage

DS(abund.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
transect = 'line', det.func = 'halfnormal',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, dist.breaks,
and offset. y is a matrix or data frame of the observed count values, with first
dimension equal to the number of sites (J) and second dimension equal to the
number of distance bins. covs is a matrix or data frame containing the variables
used in the the abundance and/or the detection portion of the model, with J rows
for each column (variable). dist.breaks is a vector of distances that denote the
breakpoints of the distance bands. dist.breaks should have length equal to the
number of columns in y plus one. offset is an offset that can be used to scale
estimates from abundance per transect to density per some desired unit of mea-
sure. This can be either a single value or a vector with an offset value for each
site (e.g., if transects differ in length)

inits a list with each tag corresponding to a parameter name. Valid tags are N, beta,
alpha, kappa, sigma.sq.mu, and sigma.sq.p. The value portion of each tag
is the parameter’s initial value. sigma.sq.mu and sigma.sq.p are only relevant
when including random effects in the abundance and detection portion of the
distance sampling model, respectively. kappa is only relevant when family =
'NB'. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.

DS 13

If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, kappa.unif, sigma.sq.mu.ig, and sigma.sq.p.ig. Abun-
dance (beta) and detection (alpha) regression coefficients are assumed to fol-
low a normal distribution. The hyperparameters of the normal distribution are
passed as a list of length two with the first and second elements corresponding
to the mean and variance of the normal distribution, which are each specified as
vectors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 100. kappa is the negative binomial dispersion
parameter and is assumed to follow a uniform distribution. The hyperparameters
of the uniform distribution are passed as a vector of length two with the first and
second elements corresponding to the lower and upper bounds of the uniform
distribution. sigma.sq.mu and sigma.sq.p are the random effect variances for
any abundance or detection random effects, respectively, and are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with first and second elements
corresponding to the shape and scale parameters, respectively, which are each
specified as vectors of length equal to the number of random intercepts/slopes
or of length one if priors are the same for all random effect variances.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial tuning variance of the adaptive sampler. Valid tags include beta, alpha,
beta.star (the abundance random effect values), alpha.star (the detection
random effect values), and kappa. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the number of MCMC samples in each batch in each chain to run for the Adap-
tive MCMC sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

14 DS

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class DS that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

N.samples a coda object of posterior samples for the latent abundance values. Note that
these values always represent transect-level abundance, even when an offset is
supplied.

mu.samples a coda object of posterior samples for the latent expected abundance values.
When an offset is supplied in the data object, these correspond to expected
abundance per unit area (i.e., density).

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

y.rep.samples a three-dimensional array of fitted values. Array dimensions correspond to
MCMC samples, sites, and distance band.

pi.samples a three-dimensional array of cell-specific detection probabilities. Array dimen-
sions correspond to MCMC samples, sites, and distance band.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

DS 15

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A., Dawson, D. K., & Bates, S. (2004). Modeling abundance effects in distance sampling.
Ecology, 85(6), 1591-1597.

Examples

set.seed(123)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
sp <- FALSE
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'

dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect)

y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)

https://doi.org/10.18637/jss.v067.i01

16 fitted.abund

colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',
'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
offset = offset)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 10),

alpha.normal = list(mean = 0,
var = 10),

kappa.unif = c(0, 100))
Starting values
inits.list <- list(alpha = 0,

beta = 0,
kappa = 1)

Tuning values
tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,

kappa = 0.2)

out <- DS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = 10,
batch.length = 25,
inits = inits.list,
family = 'NB',
det.func = 'halfnormal',
transect = 'point',
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 100,
n.burn = 100,
n.thin = 1,
n.chains = 1)

summary(out)

fitted.abund Extract Model Fitted Values for abund Object

Description

Method for extracting model fitted values from a fitted GLMM (abund).

fitted.DS 17

Usage

S3 method for class 'abund'
fitted(object, ...)

Arguments

object object of class abund.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
abund.

Value

A three-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, sites, and replicates

fitted.DS Extract Model Fitted Values for DS Object

Description

Method for extracting model fitted values and cell-specific detection probabilities from a hierarchi-
cal distance sampling (DS) model.

Usage

S3 method for class 'DS'
fitted(object, ...)

Arguments

object object of class DS.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class DS.

18 fitted.lfMsAbund

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit as-
sessments. Array dimensions correspond to MCMC samples, sites, and distance
bin.

pi.samples A three-dimensional numeric array of cell-specific detection probability values.
Values correspond to the probability of detecting an individual within a given
distance band at a given location. Array dimensions correspond to MCMC sam-
ples, sites, and distance band.

fitted.lfMsAbund Extract Model Fitted Values for lfMsAbund Object

Description

Method for extracting model fitted values from a fitted latent factor multivariate GLMM (lfMsAbund).

Usage

S3 method for class 'lfMsAbund'
fitted(object, ...)

Arguments

object object of class lfMsAbund.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
lfMsAbund.

Value

A four-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, species, sites, and replicates.

fitted.lfMsDS 19

fitted.lfMsDS Extract Model Fitted Values for lfMsDS Object

Description

Method for extracting model fitted values and cell-specific detection probabilities from a latent
factor multi-species hierarchical distance sampling (lfMsDS) model.

Usage

S3 method for class 'lfMsDS'
fitted(object, ...)

Arguments

object object of class lfMsDS.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class lfMsDS.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and distance bin.

pi.samples A four-dimensional numeric array of cell-specific detection probability values.
Values correspond to the probability of detecting an individual within a given
distance band at a given location. Array dimensions correspond to MCMC sam-
ples, species, sites, and distance band.

fitted.lfMsNMix Extract Model Fitted Values for lfMsNMix Object

Description

Method for extracting model fitted values and detection probability values from a fitted latent factor
multi-species N-mixture (lfMsNMix) model.

20 fitted.msAbund

Usage

S3 method for class 'lfMsNMix'
fitted(object, type = 'marginal', ...)

Arguments

object object of class lfMsNMix.

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal').

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class lfMsNMix.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.msAbund Extract Model Fitted Values for msAbund Object

Description

Method for extracting model fitted values from a fitted multivariate GLMM (msAbund).

Usage

S3 method for class 'msAbund'
fitted(object, ...)

Arguments

object object of class msAbund.

... currently no additional arguments

fitted.msDS 21

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
msAbund.

Value

A four-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, species, sites, and replicates.

fitted.msDS Extract Model Fitted Values for msDS Object

Description

Method for extracting model fitted values and cell-specific detection probabilities from a multi-
species hierarchical distance sampling (msDS) model.

Usage

S3 method for class 'msDS'
fitted(object, ...)

Arguments

object object of class msDS.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class msDS.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and distance bin.

pi.samples A four-dimensional numeric array of cell-specific detection probability values.
Values correspond to the probability of detecting an individual within a given
distance band at a given location. Array dimensions correspond to MCMC sam-
ples, species, sites, and distance band.

22 fitted.msNMix

fitted.msNMix Extract Model Fitted Values for msNMix Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species N-mixture (msNMix) model.

Usage

S3 method for class 'msNMix'
fitted(object, type = 'marginal', ...)

Arguments

object object of class msNMix.

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal').

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class msNMix.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.NMix 23

fitted.NMix Extract Model Fitted Values for NMix Object

Description

Method for extracting model fitted values and detection probabilities from a fitted N-mixture (NMix)
model.

Usage

S3 method for class 'NMix'
fitted(object, type = 'marginal', ...)

Arguments

object object of class NMix.

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal').

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class NMix.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.

24 fitted.sfMsDS

fitted.sfMsAbund Extract Model Fitted Values for sfMsAbund Object

Description

Method for extracting model fitted values from a fitted spatial factor multivariate GLMM (sfMsAbund).

Usage

S3 method for class 'sfMsAbund'
fitted(object, ...)

Arguments

object object of class sfMsAbund.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
sfMsAbund.

Value

A four-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, species, sites, and replicates.

fitted.sfMsDS Extract Model Fitted Values for sfMsDS Object

Description

Method for extracting model fitted values and cell-specific detection probabilities from a spatial
factor multi-species hierarchical distance sampling (sfMsDS) model.

Usage

S3 method for class 'sfMsDS'
fitted(object, ...)

Arguments

object object of class sfMsDS.

... currently no additional arguments

fitted.sfMsNMix 25

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class sfMsDS.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and distance bin.

pi.samples A four-dimensional numeric array of cell-specific detection probability values.
Values correspond to the probability of detecting an individual within a given
distance band at a given location. Array dimensions correspond to MCMC sam-
ples, species, sites, and distance band.

fitted.sfMsNMix Extract Model Fitted Values for sfMsNMix Object

Description

Method for extracting model fitted values and detection probability values from a fitted spatial factor
multi-species N-mixture (sfMsNMix) model.

Usage

S3 method for class 'sfMsNMix'
fitted(object, type = 'marginal', ...)

Arguments

object object of class sfMsNMix.

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal').

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class sfMsNMix.

26 fitted.spAbund

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.spAbund Extract Model Fitted Values for spAbund Object

Description

Method for extracting model fitted values from a fitted spatial GLMM (spAbund).

Usage

S3 method for class 'spAbund'
fitted(object, ...)

Arguments

object object of class spAbund.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
spAbund.

Value

A three-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, sites, and replicates

fitted.spDS 27

fitted.spDS Extract Model Fitted Values for spDS Object

Description

Method for extracting model fitted values and cell-specific detection probabilities from a spatial
hierarchical distance sampling (spDS) model.

Usage

S3 method for class 'spDS'
fitted(object, ...)

Arguments

object object of class spDS.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class spDS.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit as-
sessments. Array dimensions correspond to MCMC samples, sites, and distance
bin.

pi.samples A three-dimensional numeric array of cell-specific detection probability values.
Values correspond to the probability of detecting an individual within a given
distance band at a given location. Array dimensions correspond to MCMC sam-
ples, sites, and distance band.

fitted.spNMix Extract Model Fitted Values for spNMix Object

Description

Method for extracting model fitted values and detection probabilities from a fitted spatial N-mixture
(spNMix) model.

28 fitted.svcAbund

Usage

S3 method for class 'spNMix'
fitted(object, type = 'marginal', ...)

Arguments

object object of class spNMix.

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal').

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class spNMix.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.

fitted.svcAbund Extract Model Fitted Values for svcAbund Object

Description

Method for extracting model fitted values from a fitted spatially-varying coefficient GLMM (svcAbund).

Usage

S3 method for class 'svcAbund'
fitted(object, ...)

Arguments

object object of class svcAbund.

... currently no additional arguments

fitted.svcMsAbund 29

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
svcAbund.

Value

A three-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, sites, and replicates

fitted.svcMsAbund Extract Model Fitted Values for svcMsAbund Object

Description

Method for extracting model fitted values from a fitted multivatiate spatially-varying coefficient
GLMM (svcMsAbund).

Usage

S3 method for class 'svcMsAbund'
fitted(object, ...)

Arguments

object object of class svcMsAbund.

... currently no additional arguments

Details

A method to the generic fitted function to extract fitted values for fitted model objects of class
svcMsAbund.

Value

A four-dimensional numeric array of fitted values for use in Goodness of Fit assessments. Array
dimensions correspond to MCMC samples, species, sites, and replicates.

30 hbefCount2015

hbefCount2015 Count data of 12 foliage gleaning bird species in 2015 in the Hubbard
Brook Experimental Forest

Description

Repeated count data of 12 foliage gleaning bird species in 2015 in the Hubbard Brook Experimental
Forest (HBEF) in New Hampshire, USA. Data were collected at 373 sites over three replicate point
counts each of 10 minutes in length, with a detection radius of 100m. Some sites were not visited
for all three replicates. The 12 species included in the data set are as follows: (1) AMRE: Amer-
ican Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo; (4) BLBW:
Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue Warbler;
(7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA: Magnolia
Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed Vireo.

Usage

data(hbefCount2015)

Format

hbefCount2015 is a list with four elements:

y: a three-dimensional array of count data with dimensions of species (12), sites (373) and replicates
(3).

abund.covs: a data frame with 373 rows and one column consisting of the elevation at each site.

det.covs: a list of two numeric matrices with 373 rows and 3 columns. The first element is the
day of year when the survey was conducted for a given site and replicate. The second element is
the time of day when the survey was conducted.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NAD83".

Source

Rodenhouse, N. and S. Sillett. 2019. Valleywide Bird Survey, Hubbard Brook Experimental Forest,
1999-2016 (ongoing) ver 3. Environmental Data Initiative. doi:10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
(Accessed 2021-09-07)

References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

https://doi.org/10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
https://doi.org/10.1111/2041-210X.13811

lfMsAbund 31

lfMsAbund Function for Fitting Latent Factor Multivariate Abundance GLMMs

Description

Function for fitting multivariate generalized linear (mixed) models with species correlations (i.e.,
an abundance-based joint species distribution model). We use a factor modeling approach for di-
mension reduction.

Usage

lfMsAbund(formula, data, inits, priors, tuning, n.factors,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
z, and offset. y is a two or three-dimensional array of observed count data. The
first dimension of the array is equal to the number of species and the second di-
mension is equal to the number of sites. If specified as a three-dimensional array,
the third dimension corresponds to replicate observations at each site (e.g., sub-
samples, repeated sampling over multiple seasons). covs is a list or data frame
containing the variables used in the model. If a data frame, each row of covs
is a site and each column is a variable. If specified as a list, each list element is
a different covariate, which can be site-level or observation-level. Site-level co-
variates are specified as a vector of length J , while observation-level covariates
are specified as a matrix or data frame with the number of rows equal to J and
number of columns equal to the maximum number of replicate observations at
a given site. coords is a matrix or data frame with two columns that contain the
spatial coordinates of each site. Note that spAbundance assumes coordinates are
specified in a projected coordinate system. For zi-Gaussian models, the tag z is
used to specify the binary component of the zi-Gaussian model and should have
the same dimensions as y. offset is an offset to use in the abundance model
(e.g., an area offset). This can be either a single value, a vector with an offset
for each site (e.g., if survey area differed in size), or a site x replicate matrix if
more than one count is available at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, sigma.sq.mu, kappa, lambda, w, tau.sq. kappa is only
specified if family = 'NB', tau.sq is only specified for Gaussian and zi-Gaussian
models, and sigma.sq.mu is only specified if random effects are included in

32 lfMsAbund

formula. The value portion of each tag is the parameter’s initial value. See
priors description for definition of each parameter name. Additionally, the tag
fix can be set to TRUE to fix the starting values across all chains. If fix is not
specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, sigma.sq.mu, kappa.unif, tau.sq.ig. Community-level
(beta.comm) regression coefficients are assumed to follow a normal distribution.
The hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of the
normal distribution, which are each specified as vectors of length equal to the
number of coefficients to be estimated or of length one if priors are the same for
all coefficients. If not specified, prior means are set to 0 and prior variances to
100. Community-level variance parameters (tau.sq.beta) are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if priors are the same for all parameters. If not specified, prior shape and
scale parameters are set to 0.1. sigma.sq.mu are the random effect variances
random effects, respectively, and are assumed to follow an inverse Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances. kappa is the negative binomial dispersion pa-
rameter for each species and is assumed to follow a uniform distribution. The
hyperparameters of the uniform distribution are passed as a list of length two
with first and second elements corresponding to the lower and upper bounds
of the uniform distribution, respectively, which are each specified as vectors of
length equal to the number of species or of length one if priors are the same
for all species-specific dispersion parameters. tau.sq is the species-specific
residual variance for Gaussian (or zi-Gaussian) models, and it is assigned an
inverse-Gamma prior. The hyperparameters of the inverse-Gamma are passed
as a list of length two, with the first and second element corresponding to the
shape and scale parameters, respectively, which are each specified as vectors of
length equal to the number of species or a single value if priors are the same for
all species.

tuning a list with each tag corresponding to a parameter name, whose whose value de-
fines the initial variance of the adaptive sampler. Valid tags are beta, beta.star
(the abundance random effect values), kappa, lambda (the latent factor load-
ings), and w (the latent factors). See Roberts and Rosenthal (2009) for details.
Note that no tuning is necessary for Gaussian or zi-Gaussian models.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC

lfMsAbund 33

sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial), 'Poisson', 'Gaussian', and 'zi-Gaussian'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

save.fitted logical value indicating whether or not fitted values and likelihood values should
be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

... currently no additional arguments

Value

An object of class lfMsAbund that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level regression coeffi-
cients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

34 lfMsAbund

tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.
Only included when family = 'Gaussian' or family = 'zi-Gaussian'.

lambda.samples a coda object of posterior samples for the latent factor loadings.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor. Array dimensions correspond to MCMC sample, latent factor, then
site.

y.rep.samples a three or four-dimensional array of posterior samples for the fitted (replicate)
values for each species with dimensions corresponding to MCMC sample, species,
site, and replicate.

mu.samples a three or four-dimensional array of posterior samples for the expected abun-
dance values for each species with dimensions corresponding to MCMC sam-
ples, species, site, and replicate.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

References

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y

https://doi.org/10.18637/jss.v067.i01

lfMsAbund 35

n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Random effects (two random intercepts)
mu.RE <- list(levels = c(10, 15),

sigma.sq.mu = c(0.43, 0.5))
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- FALSE
kappa <- runif(n.sp, 0.1, 1)
factor.model <- TRUE
n.factors <- 3

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep,
n.sp = n.sp, beta = beta, mu.RE = mu.RE,
sp = sp, kappa = kappa, family = 'NB')

y <- dat$y
X <- dat$X
X.re <- dat$X.re
coords <- dat$coords

Package all data into a list
covs <- list(int = X[, , 1],

abund.cov.1 = X[, , 2],
abund.factor.1 = X.re[, , 1],
abund.factor.2 = X.re[, , 2])

data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0, beta = 0, kappa = 0.5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1, beta.star = 0.1,
lambda = 0.5, w = 0.5)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- lfMsAbund(formula = ~ abund.cov.1 + (1 | abund.factor.1) +
(1 | abund.factor.2),

data = data.list,
n.batch = n.batch,

36 lfMsDS

inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.factors = n.factors,
n.omp.threads = 3,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

lfMsDS Function for Fitting Latent Factor Multi-Species Hierarchical Dis-
tance Sampling Models

Description

Function for fitting latent factor multi-species hierarchical distance sampling models.

Usage

lfMsDS(abund.formula, det.formula, data, inits, priors,
tuning, n.factors, n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', transect = 'line', det.func = 'halfnormal',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
dist.breaks, and offset. y is a three-dimensional array of observed count
data with first dimension equal to the number of species, second dimension equal
to the number of sites, and third dimension equal to the maximum number of
replicates at a given site. covs is a matrix or data frame containing the variables
used in the abundance and/or the detection portion of the model, with J rows
for each column (variable). dist.breaks is a vector of distances that denote

lfMsDS 37

the breakpoints of the distance bands. dist.breaks should have length equal
to the third dimension of y plus one. offset is an offset that can be used to
scale estimates from abundance per transect to density per some desired unit
of measure. This can be either a single value or a vector with an offset value
for each site (e.g., if transects differ in length). coords is a matrix or data
frame with two columns that contain the spatial coordinates of each site. Note
that spAbundance assumes coordinates are specified in a projected coordinate
system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
kappa, N, lambda, w. sigma.sq.mu and sigma.sq.p are only relevant when in-
cluding random effects in the abundance and detection portion of the model,
respectively. kappa is only relevant when family = 'NB'. The value portion of
each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, and kappa.unif. Community-level abundance (beta.comm)
and detection (alpha.comm) regression coefficients are assumed to follow a nor-
mal distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances are set to 100. Community-level variance parameters for abun-
dance (tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow an
inverse Gamma distribution. The hyperparameters of the inverse gamma distri-
bution are passed as a list of length two with the first and second elements corre-
sponding to the shape and scale parameters, which are each specified as vectors
of length equal to the number of coefficients to be estimated or a single value
if all parameters are assigned the same prior. If not specified, prior shape and
scale parameters are set to 0.1. sigma.sq.mu and sigma.sq.p are the random
effect variances for any abundance or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.
kappa is the negative binomial dispersion parameter for each species and is as-
sumed to follow a uniform distribution. The hyperparameters of the uniform
distribution are passed as a list of length two with first and second elements
corresponding to the lower and upper bounds of the uniform distribution, re-
spectively, which are each specified as vectors of length equal to the number of
species or of length one if priors are the same for all species-specific dispersion
parameters.

tuning a list with each tag corresponding to a parameter name, whose value defines the

38 lfMsDS

initial variance of the adaptive sampler. Valid tags are beta, alpha, lambda (the
latent factor loadings), w (the latent factors), beta.star (the abundance random
effect values), alpha.star (the detection random effect values), and kappa. See
Roberts and Rosenthal (2009) for details.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class lfMsDS that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

lfMsDS 39

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

lambda.samples a coda object of posterior samples for the latent factor loadings.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor.

N.samples a three-dimensional array of posterior samples for the latent abundance values
for each species. Note that these values always represent transect-level abun-
dance, even when an offset is supplied. Array dimensions correspond to MCMC
sample, species, and site.

mu.samples a three-dimensional array of posterior samples for the latent expected abundance
values for each species. When an offset is supplied in the data object, these
correspond to expected abundance per unit area (i.e., density). Array dimensions
correspond to MCMC sample, species, and site.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

y.rep.samples a four-dimensional array of fitted values. Array dimensions correspond to MCMC
samples, species, sites, and distance band.

pi.samples a four-dimensional array of cell-specific detection probabilities. Array dimen-
sions correspond to MCMC samples, species, sites, and distance band.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

40 lfMsDS

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Sollmann, R., Gardner, B., Williams, K. A., Gilbert, A. T., & Veit, R. R. (2016). A hierarchical dis-
tance sampling model to estimate abundance and covariate associations of species and communities.
Methods in Ecology and Evolution, 7(5), 529-537.

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}

https://doi.org/10.18637/jss.v067.i01

lfMsDS 41

for (i in 1:p.det) {
alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))

}
sp <- FALSE
family <- 'Poisson'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- TRUE
n.factors <- 3

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model,
n.factors = n.factors)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- dat$coords
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0, var = 10),
kappa.unif = list(0, 100),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8, lambda = 1, w = 1)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

42 lfMsNMix

out <- lfMsDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
n.factors = n.factors,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

lfMsNMix Function for Fitting Latent Factor Multi-species N-mixture Models

Description

Function for fitting multi-species N-mixture models with species correlations (i.e., an abundance-
based joint species distribution model with imperfect detection). We use a factor modeling approach
for dimension reduction.

Usage

lfMsNMix(abund.formula, det.formula, data, inits, priors,
tuning, n.factors, n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

lfMsNMix 43

data a list containing data necessary for model fitting. Valid tags are y, abund.covs,
det.covs, coords, and offset. y is a three-dimensional array of observed
count data with first dimension equal to the number of species, second dimen-
sion equal to the number of sites, and third dimension equal to the maximum
number of replicates at a given site. abund.covs is a matrix or data frame con-
taining the variables used in the abundance portion of the model, with J rows for
each column (variable). det.covs is a list of variables included in the detection
portion of the model. Each list element is a different detection covariate, which
can be site-level or observational-level. Site-level covariates are specified as a
vector of length J while observation-level covariates are specified as a matrix
or data frame with the number of rows equal to J and number of columns equal
to the maximum number of replicates at a given site. coords is a matrix or data
frame with two columns that contain the spatial coordinates of each site. Note
that spAbundance assumes coordinates are specified in a projected coordinate
system. offset is an offset to use in the abundance model (e.g., an area offset).
This can be either a single value or a vector with an offset for each site (e.g., if
survey area differed in size).

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
lambda, w, kappa, and N. sigma.sq.mu and sigma.sq.p are only relevant when
including random effects in the abundance and detection portion of the model,
respectively. kappa is only relevant when family = 'NB'. The value portion of
each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, and kappa.unif. Community-level abundance (beta.comm)
and detection (alpha.comm) regression coefficients are assumed to follow a nor-
mal distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances for the abundance coefficients are set to 100 and for the detection
coefficients are set to 2.72. Community-level variance parameters for abundance
(tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. sigma.sq.mu and sigma.sq.p are the random ef-
fect variances for any abundance or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,

44 lfMsNMix

which are each specified as vectors of length equal to the number of random
effects or of length one if priors are the same for all random effect variances.
kappa is the negative binomial dispersion parameter for each species and is as-
sumed to follow a uniform distribution. The hyperparameters of the uniform
distribution are passed as a list of length two with first and second elements
corresponding to the lower and upper bounds of the uniform distribution, re-
spectively, which are each specified as vectors of length equal to the number of
species or of length one if priors are the same for all species-specific dispersion
parameters.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are beta, alpha, beta.star
(the abundance random effect values), alpha.star (the detection random effect
values), lambda (the latent factor loadings), w (the latent factors), and kappa.
See Roberts and Rosenthal (2009) for details.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class lfMsNMix that is a list comprised of:

lfMsNMix 45

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

lambda.samples a coda object of posterior samples for the latent factor loadings.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

N.samples a three-dimensional array of posterior samples for the latent abundance values
for each species.

mu.samples a three-dimensional array of posterior samples for the latent expected abundance
values for each species.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

46 lfMsNMix

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Yamaura, Y., Royle, J. A., Shimada, N., Asanuma, S., Sato, T., Taki, H., & Makino, S. I. (2012).
Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance
models for count data. Biodiversity and Conservation, 21(6), 1365-1380.

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(5, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Detection
alpha.mean <- c(0, 0.5, 0.8)
tau.sq.alpha <- c(0.2, 1, 1.5)
p.det <- length(alpha.mean)
Random effects
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
mu.RE = mu.RE, p.RE = p.RE, sp = FALSE, family = 'Poisson',
factor.model = TRUE, n.factors = n.factors)

y <- dat$y
X <- dat$X

https://doi.org/10.18637/jss.v067.i01

msAbund 47

X.p <- dat$X.p
X.re <- dat$X.re
X.p.re <- dat$X.p.re
coords <- dat$coords

Package all data into a list
abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')
det.covs <- list(det.cov.1 = as.data.frame(X.p[, , 2]),

det.cov.2 = as.data.frame(X.p[, , 3]))
data.list <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

prior.list <- list(beta.comm.normal = list(mean = rep(0, p.abund),
var = rep(100, p.abund)),

alpha.comm.normal = list(mean = rep(0, p.det),
var = rep(2.72, p.det)),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

inits.list <- list(beta.comm = 0, alpha.comm = 0,
beta = 0, alpha = 0,
tau.sq.beta = 0.5, tau.sq.alpha = 0.5,
N = apply(y, c(1, 2), max, na.rm = TRUE))

tuning.list <- list(beta = 0.5, alpha = 0.5, lambda = 0.5, w = 0.5)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- lfMsNMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
n.factors = n.factors,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

msAbund Function for Fitting Multivariate Abundance GLMMs

48 msAbund

Description

The function msAbund fits multivariate abundance GLMMs.

Usage

msAbund(formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, z, and
offset. y is a two or three-dimensional array of observed count data. The first
dimension of the array is equal to the number of species and the second dimen-
sion is equal to the number of sites. If specified as a three-dimensional array,
the third dimension corresponds to replicate observations at each site (e.g., sub-
samples, repeated sampling over multiple seasons). covs is a list or data frame
containing the variables used in the model. If a data frame, each row of covs
is a site and each column is a variable. If a list, each list element is a different
covariate, which can be site-level or observation-level. Site-level covariates are
specified as a vector of length J , while observation-level covariates are speci-
fied as a matrix or data frame with the number of rows equal to J and number
of columns equal to the maximum number of replicate observations at a given
site. For zero-inflated Gaussian models, the tag z is used to specify the binary
component of the model and should have the same dimensions as y. offset is
an offset to use in the abundance model (e.g., an area offset). This can be either
a single value, a vector with an offset for each site (e.g., if survey area differed
in size), or a site x replicate matrix if more than one count is available at a given
site.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, sigma.sq.mu, kappa, tau.sq. kappa is only specified if
family = 'NB', tau.sq is only specified for Gaussian or zero-inflated Gaussian
models, and sigma.sq.mu is only specified if random effects are included in
formula. The value portion of each tag is the parameter’s initial value. See
priors description for definition of each parameter name. Additionally, the tag
fix can be set to TRUE to fix the starting values across all chains. If fix is not
specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, sigma.sq.mu, kappa.unif, tau.sq.ig. Community-level
(beta.comm) regression coefficients are assumed to follow a normal distribution.
The hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of the

msAbund 49

normal distribution, which are each specified as vectors of length equal to the
number of coefficients to be estimated or of length one if priors are the same for
all coefficients. If not specified, prior means are set to 0 and prior variances to
100. Community-level variance parameters (tau.sq.beta) are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if priors are the same for all parameters. If not specified, prior shape and
scale parameters are set to 0.1. sigma.sq.mu are the random effect variances
random effects, respectively, and are assumed to follow an inverse Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances. kappa is the negative binomial dispersion pa-
rameter for each species and is assumed to follow a uniform distribution. The
hyperparameters of the uniform distribution are passed as a list of length two
with first and second elements corresponding to the lower and upper bounds
of the uniform distribution, respectively, which are each specified as vectors of
length equal to the number of species or of length one if priors are the same for
all species-specific dispersion parameters. tau.sq is the species-specific resid-
ual variance for Gaussian (or zero-inflated Gaussian) models, and it is assigned
an inverse-Gamma prior. The hyperparameters of the inverse-Gamma are passed
as a list of length two, with the first and second element corresponding to the
shape and scale parameters, respectively, which are each specified as vectors of
length equal to the number of species or a single value if priors are the same for
all species.

tuning a list with each tag corresponding to a parameter name, whose value defines
the initial variance of the adaptive sampler. Valid tags are beta, beta.star
(the abundance random effect values), and kappa. See Roberts and Rosenthal
(2009) for details. Note that no tuning is necessary for Gaussian or zero-inflated
Gaussian models.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial), 'Poisson', 'Gaussian', and 'zi-Gaussian'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

50 msAbund

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

save.fitted logical value indicating whether or not fitted values and likelihood values should
be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

... currently no additional arguments

Value

An object of class msAbund that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level regression coeffi-
cients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.
Only included when family = 'Gaussian' or family = 'zi-Gaussian'.

y.rep.samples a three or four-dimensional array of posterior samples for the fitted (replicate)
values for each species with dimensions corresponding to MCMC sample, species,
site, and replicate.

mu.samples a three or four-dimensional array of posterior samples for the expected abun-
dance values for each species with dimensions corresponding to MCMC sam-
ples, species, site, and replicate.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

msAbund 51

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

References

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Random effects (two random intercepts)
mu.RE <- list(levels = c(10, 15),

sigma.sq.mu = c(0.43, 0.5))
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- FALSE
kappa <- runif(n.sp, 0.1, 1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB')

https://doi.org/10.18637/jss.v067.i01

52 msDS

y <- dat$y
X <- dat$X
X.re <- dat$X.re

Package all data into a list
covs <- list(int = X[, , 1],

abund.cov.1 = X[, , 2],
abund.factor.1 = X.re[, , 1],
abund.factor.2 = X.re[, , 2])

data.list <- list(y = y, covs = covs)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0,
beta = 0,
kappa = 0.5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1, beta.star = 0.1)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- msAbund(formula = ~ abund.cov.1 + (1 | abund.factor.1) +
(1 | abund.factor.2),

data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 3,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

msDS Function for Fitting Multi-Species Hierarchical Distance Sampling
Models

Description

Function for fitting multi-species hierarchical distance sampling models.

msDS 53

Usage

msDS(abund.formula, det.formula, data, inits, priors,
tuning, n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', transect = 'line', det.func = 'halfnormal',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, and
dist.breaks, and offset. y is a three-dimensional array of observed count
data with first dimension equal to the number of species, second dimension equal
to the number of sites, and third dimension equal to the maximum number of
replicates at a given site. covs is a matrix or data frame containing the variables
used in the abundance and/or the detection portion of the model, with J rows
for each column (variable). dist.breaks is a vector of distances that denote
the breakpoints of the distance bands. dist.breaks should have length equal
to the third dimension of y plus one. offset is an offset that can be used to
scale estimates from abundance per transect to density per some desired unit of
measure. This can be either a single value or a vector with an offset value for
each site (e.g., if transects differ in length)

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
kappa, and N. sigma.sq.mu and sigma.sq.p are only relevant when including
random effects in the abundance and detection portion of the model, respec-
tively. kappa is only relevant when family = 'NB'. The value portion of each
tag is the parameter’s initial value. See priors description for definition of each
parameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, and kappa.unif. Community-level abundance (beta.comm)
and detection (alpha.comm) regression coefficients are assumed to follow a nor-
mal distribution. The hyperparameters of the normal distribution are passed
as a list of length two with the first and second elements corresponding to the
mean and variance of the normal distribution, which are each specified as vec-
tors of length equal to the number of coefficients to be estimated or of length

54 msDS

one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances are set to 100. Community-level variance parame-
ters for abundance (tau.sq.beta) and detection (tau.sq.alpha) are assumed
to follow an inverse Gamma distribution. The hyperparameters of the inverse
gamma distribution are passed as a list of length two with the first and second
elements corresponding to the shape and scale parameters, which are each spec-
ified as vectors of length equal to the number of coefficients to be estimated or
a single value if all parameters are assigned the same prior. If not specified,
prior shape and scale parameters are set to 0.1. sigma.sq.mu and sigma.sq.p
are the random effect variances for any abundance or detection random effects,
respectively, and are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse-Gamma distribution are passed as a list of length
two with first and second elements corresponding to the shape and scale param-
eters, respectively, which are each specified as vectors of length equal to the
number of random effects or of length one if priors are the same for all random
effect variances. kappa is the negative binomial dispersion parameter for each
species and is assumed to follow a uniform distribution. The hyperparameters of
the uniform distribution are passed as a list of length two with first and second
elements corresponding to the lower and upper bounds of the uniform distri-
bution, respectively, which are each specified as vectors of length equal to the
number of species or of length one if priors are the same for all species-specific
dispersion parameters.

tuning a list with each tag corresponding to a parameter name, whose whose value
defines the initial variance of the adaptive sampler. Valid tags are beta, alpha,
beta.star (the abundance random effect values), alpha.star (the detection
random effect values), and kappa. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

msDS 55

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class msDS that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

N.samples a three-dimensional array of posterior samples for the latent abundance values
for each species. Note that these values always represent transect-level abun-
dance, even when an offset is supplied. Array dimensions correspond to MCMC
sample, species, and site.

mu.samples a three-dimensional array of posterior samples for the latent expected abundance
values for each species. When an offset is supplied in the data object, these
correspond to expected abundance per unit area (i.e., density). Array dimensions
correspond to MCMC samples, species, and site.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

56 msDS

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

y.rep.samples a four-dimensional array of fitted values. Array dimensions correspond to MCMC
samples, species, sites, and distance band.

pi.samples a four-dimensional array of cell-specific detection probabilities. Array dimen-
sions correspond to MCMC samples, species, sites, and distance band.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Sollmann, R., Gardner, B., Williams, K. A., Gilbert, A. T., & Veit, R. R. (2016). A hierarchical dis-
tance sampling model to estimate abundance and covariate associations of species and communities.
Methods in Ecology and Evolution, 7(5), 529-537.

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)

https://doi.org/10.18637/jss.v067.i01

msDS 57

Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE
family <- 'Poisson'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- FALSE

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model)

y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0,
var = 10),

kappa.unif = list(0, 100),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

58 msNMix

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- msDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

msNMix Function for Fitting Multi-species N-mixture Models

Description

Function for fitting multi-species N-mixture models.

Usage

msNMix(abund.formula, det.formula, data, inits, priors,
tuning, n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

msNMix 59

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, abund.covs,
det.covs, and offset. y is a three-dimensional array of observed count data
with first dimension equal to the number of species, second dimension equal
to the number of sites, and third dimension equal to the maximum number of
replicates at a given site. abund.covs is a matrix or data frame containing the
variables used in the abundance portion of the model, with J rows for each col-
umn (variable). det.covs is a list of variables included in the detection portion
of the model. Each list element is a different detection covariate, which can be
site-level or observational-level. Site-level covariates are specified as a vector
of length J while observation-level covariates are specified as a matrix or data
frame with the number of rows equal to J and number of columns equal to the
maximum number of replicates at a given site. offset is an offset to use in the
abundance model (e.g., an area offset). This can be either a single value or a
vector with an offset for each site (e.g., if survey area differed in size).

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
kappa, and N. sigma.sq.mu and sigma.sq.p are only relevant when including
random effects in the abundance and detection portion of the model, respec-
tively. kappa is only relevant when family = 'NB'. The value portion of each
tag is the parameter’s initial value. See priors description for definition of each
parameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, and kappa.unif. Community-level abundance (beta.comm)
and detection (alpha.comm) regression coefficients are assumed to follow a nor-
mal distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances for the abundance coefficients are set to 100 and for the detection
coefficients are set to 2.72. Community-level variance parameters for abundance
(tau.sq.beta) and detection (tau.sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of

60 msNMix

length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. sigma.sq.mu and sigma.sq.p are the random ef-
fect variances for any abundance or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts/slopes or of length one if priors are the same for all random effect
variances. kappa is the negative binomial dispersion parameter for each species
and is assumed to follow a uniform distribution. The hyperparameters of the
uniform distribution are passed as a list of length two with first and second ele-
ments corresponding to the lower and upper bounds of the uniform distribution,
respectively, which are each specified as vectors of length equal to the number of
species or of length one if priors are the same for all species-specific dispersion
parameters.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are beta, alpha, beta.star
(the abundance random effect values), alpha.star (the detection random effect
values), and kappa. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class msNMix that is a list comprised of:

msNMix 61

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

N.samples a three-dimensional array of posterior samples for the latent abundance values
for each species.

mu.samples a three-dimensional array of posterior samples for the latent expected abundance
values for each species.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

62 msNMix

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Yamaura, Y., Royle, J. A., Shimada, N., Asanuma, S., Sato, T., Taki, H., & Makino, S. I. (2012).
Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance
models for count data. Biodiversity and Conservation, 21(6), 1365-1380.

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(5, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Detection
alpha.mean <- c(0, 0.5, 0.8)
tau.sq.alpha <- c(0.2, 1, 1.5)
p.det <- length(alpha.mean)
Random effects
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
mu.RE = mu.RE, p.RE = p.RE, sp = FALSE, family = 'Poisson')

y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.re <- dat$X.re
X.p.re <- dat$X.p.re

Package all data into a list
abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')

https://doi.org/10.18637/jss.v067.i01

neonDWP 63

det.covs <- list(det.cov.1 = as.data.frame(X.p[, , 2]),
det.cov.2 = as.data.frame(X.p[, , 3]))

data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs)

prior.list <- list(beta.comm.normal = list(mean = rep(0, p.abund),
var = rep(100, p.abund)),

alpha.comm.normal = list(mean = rep(0, p.det),
var = rep(2.72, p.det)),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

inits.list <- list(beta.comm = 0, alpha.comm = 0,
beta = 0, alpha = 0,
tau.sq.beta = 0.5, tau.sq.alpha = 0.5,
N = apply(y, c(1, 2), max, na.rm = TRUE))

tuning.list <- list(beta = 0.5, alpha = 0.5)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- msNMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

neonDWP Distance sampling data of 16 bird species observed in the Disney
Wilderness Preserve in 2018 in Florida, USA

Description

Distance sampling data of 16 bird species in 2018 in the Disney Wilderness Preserve in Florida,
USA. These data were collected as part of the National Ecological Observatory Network (NEON).
Data were collected at 90 sites where observers recorded the number of all bird species observed

64 neonDWP

during a six minute, unlimited radius point count survey once during the breeding season. Dis-
tance of each individual bird to the observer was recorded using a laser rangefinder. For model-
ing, we binned the distance measurements into 4 distance bins, and only used observations within
250m. The 16 species included in the data set are as follows: (1) EATO (Eastern Towhee); (2)
EAME (Eastern Meadowlark); (3) AMCR (American Crow); (4) BACS (Bachman’s Sparrow); (5)
CARW (Carolina Wren); (6) COGD (Common Ground Dove); (7) CONI (Common Nighthawk);
(8) COYE (Common Yellowthroat); (9) EABL (Eastern Bluebird); (10) GCFL (Great-crested Fly-
catcher); (11) MODO (Mourning Dover); (12) NOCA (Northern Cardinal); (13) NOMO (Northern
Mockingbird); (14) RBWO (Red-bellied Woodpecker); (15) RHWO (Red-headed Woodpecker);
(16) WEVI (White-eyed Vireo).

Usage

data(neonDWP)

Format

neonDWP is a list with five elements:

y: a three-dimensional array of distance sampling data with dimensions of species (16), sites (90)
and distance bin (4).

covs: a data frame with 90 rows and four columns consisting of covariates for use in modeling
abundance and/or detection.

dist.breaks: a vector of five values indicating the break points of the four distance bands in the
data.

offset: an offset used to scale the 250m radius point count surveys to ha, such that resulting
estimates will be the number of individuals per ha.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (Easting
and Northing) in UTM Zone 17N. The EPSG is 32617.

Note

These data were updated on November 28, 2023 (v0.1.1), and thus any analyses run with the data
from v0.1.0 will not give the same results. The data were updated after NEON discovered an
error in how the bird count data was associated with the spatial locations of each site. These data
have been updated following the procedures outlined at https://www.neonscience.org/impact/
observatory-blog/bird-point-ids-within-grids-were-transposed-resulting-inaccurate-point.

Source

NEON (National Ecological Observatory Network). Breeding landbird point counts (DP1.10003.001),
RELEASE-2023. https://doi.org/10.48443/00pg-vm19. Dataset accessed from https://data.neonscience.org
on May 25, 2023

References

Barnett, D. T., Duffy, P. A., Schimel, D. S., Krauss, R. E., Irvine, K. M., Davis, F. W.,Gross, J.
E., Azuaje, E. I., Thorpe, A. S., Gudex-Cross, D., et al. (2019). The terrestrial organism and bio-
geochemistry spatial sampling design for the national ecological observatory network. Ecosphere,
10(2):e02540.

https://www.neonscience.org/impact/observatory-blog/bird-point-ids-within-grids-were-transposed-resulting-inaccurate-point
https://www.neonscience.org/impact/observatory-blog/bird-point-ids-within-grids-were-transposed-resulting-inaccurate-point

neonPredData 65

neonPredData Land cover covariates and coordinates at a 1ha resolution across Dis-
ney Wilderness Preserve

Description

Land cover covariates (forest cover and grassland cover) extracted at a 1km resolution across the
Disney Wildnerss Preserve for use in predicting density across the park. Land cover data come from
USGS EROS.

Usage

data(neonPredData)

Format

neonPredData is a data frame with four columns:

forest: proportion of forest cover within 1km radius.

grass: proportion of grassland cover within 1km radius.

Easting: the x coordinate of the point. The EPSG is 32617 (UTM Zone 17N).

Northing: the y coordinate of the point. The EPSG is 32617 (UTM Zone 17N).

Source

USGS Earth Resources Observation and Science Ceneter https://www.usgs.gov/centers/eros

NMix Function for Fitting Single-Species N-mixture Models

Description

Function for fitting single-species N-mixture models.

Usage

NMix(abund.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

66 NMix

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, abund.covs,
det.covs, and offset. y is a matrix or data frame of the observed count values,
with first dimension equal to the number of sites (J) and second dimension
equal to the maximum number of replicates at a given site. abund.covs is a
matrix or data frame containing the variables used in the abundance portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. offset is an offset to use in the abundance model (e.g., an area
offset). This can be either a single value or a vector with an offset for each site
(e.g., if survey area differed in size).

inits a list with each tag corresponding to a parameter name. Valid tags are N, beta,
alpha, kappa, sigma.sq.mu, and sigma.sq.p. The value portion of each tag
is the parameter’s initial value. sigma.sq.mu and sigma.sq.p are only relevant
when including random effects in the abundance and detection portion of the
model, respectively. kappa is only relevant when family = 'NB'. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, kappa.unif, sigma.sq.mu.ig, and sigma.sq.p.ig. Abun-
dance (beta) and detection (alpha) regression coefficients are assumed to fol-
low a normal distribution. The hyperparameters of the normal distribution are
passed as a list of length two with the first and second elements corresponding
to the mean and variance of the normal distribution, which are each specified as
vectors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are set
to 0 and prior variances set to 100 for the abundance coefficients and 2.72 for the
detection coefficients. kappa is the negative binomial dispersion parameter and
is assumed to follow a uniform distribution. The hyperparameters of the uni-
form distribution are passed as a vector of length two with the first and second
elements corresponding to the lower and upper bounds of the uniform distri-
bution. sigma.sq.mu and sigma.sq.p are the random effect variances for any
abundance or detection random effects, respectively, and are assumed to follow
an inverse Gamma distribution. The hyperparameters of the inverse-Gamma

NMix 67

distribution are passed as a list of length two with first and second elements
corresponding to the shape and scale parameters, respectively, which are each
specified as vectors of length equal to the number of random intercepts/slopes
or of length one if priors are the same for all random effect variances.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are beta, alpha, beta.star
(the abundance random effect values), alpha.star (the detection random effect
values), and kappa. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class NMix that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

N.samples a coda object of posterior samples for the latent abundance values

mu.samples a coda object of posterior samples for the latent expected abundance values
sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

68 NMix

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115. doi:10.1111/j.0006341X.2004.00142.x.

Examples

set.seed(1010)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5)
p.abund <- length(beta)
alpha <- c(0.5, 1.2, -0.5)
p.det <- length(alpha)
mu.RE <- list()
p.RE <- list()
phi <- 3/.6
sigma.sq <- 2
kappa <- 0.3
sp <- FALSE

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/j.0006-341X.2004.00142.x

NMix 69

cov.model <- 'exponential'
dist <- 'NB'
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

kappa = kappa, mu.RE = mu.RE, p.RE = p.RE, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = cov.model,
family = 'NB')

y <- dat$y
X <- dat$X
X.p <- dat$X.p

abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')

det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])

data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs)

Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.abund),

var = rep(100, p.abund)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)),
kappa.unif = c(0, 10))

Starting values
inits.list <- list(alpha = 0,

beta = 0,
kappa = kappa,
N = apply(y, 1, max, na.rm = TRUE))

n.batch <- 4
batch.length <- 25
n.burn <- 50
n.thin <- 1
n.chains <- 1

out <- NMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

70 ppcAbund

ppcAbund Function for performing posterior predictive checks

Description

Function for performing posterior predictive checks on spAbundance model objects.

Usage

ppcAbund(object, fit.stat, group, type = 'marginal', ...)

Arguments

object an object of class NMix, spNMix, msNMix, lfMsNMix, sfMsNMix, abund, spAbund,
msAbund, lfMsAbund, sfMsAbund, DS, spDS, msDS, lfMsDS, sfMsDS.

fit.stat a quoted keyword that specifies the fit statistic to use in the posterior predictive
check. Supported fit statistics are "freeman-tukey" and "chi-squared".

group a positive integer indicating the way to group the abundance data for the poste-
rior predictive check. Value 0 will not group the data and use the raw counts, 1
will group values by row (site), and value 2 will group values by column (repli-
cate).

type a character string indicating whether fitted values should be generated condi-
tional on the estimated latent abundance values (type = 'conditional') esti-
mated during the model or based on the marginal expected abundance values
(type = 'marginal'). This is only relevant for N-mixture models.

... currently no additional arguments

Value

An object of class ppcAbund that is a list comprised of:

fit.y a numeric vector of posterior samples for the fit statistic calculated on the ob-
served data when object is of class NMix, spNMix, abund, spAbund, DS, or spDS.
When object is of class msNMix, lfMsNMix, sfMsNMix, msAbund, lfMsAbund,
sfMsAbund, msDS, lfMsDS, sfMsDS, this is a numeric matrix with rows corre-
sponding to posterior samples and columns corresponding to species.

fit.y.rep a numeric vector of posterior samples for the fit statistic calculated on a replicate
data set generated from the model when object is of class NMix, spNMix, abund,
spAbund, DS, spDS. When object is of class msNMix, lfMsNMix, sfMsNMix,
msAbund, lfMsAbund, sfMsAbund, msDS, lfMsDS, sfMsDS, this is a numeric ma-
trix with rows corresponding to posterior samples and columns corresponding
to species.

fit.y.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the observed
data for each unique element the fit statistic is calculated for (i.e., observations

ppcAbund 71

when group = 0, sites when group = 1, replicates when group = 2) when object
is of class NMix, spNMix, abund, spAbund, DS, or spDS. When object is of
class msNMix, lfMsNMix, sfMsNMix, msAbund, lfMsAbund, sfMsAbund, msDS,
lfMsDS, sfMsDS, this is a three-dimensional array with the additional dimension
corresponding to species.

fit.y.rep.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the model
replicated data for each unique element the fit statistic is calculated for (i.e.,
observations when group = 0, sites when group = 1, replicates when group =
2) when object is of class NMix, spNMix, abund, spAbund, DS, spDS. When
object is of class msNMix, sfMsNMix, msAbund, lfMsAbund, sfMsAbund, msDS,
lfMsDS, sfMsDS, this is a three-dimensional array with the additional dimension
corresponding to species.

The return object will include additional objects used for standard extractor functions.

Note

ppcAbund will return an error for Gaussian or zero-inflated Gaussian models. For Gaussian models,
standard residual diagnostics can be used to assess model fit.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(1010)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5)
p.abund <- length(beta)
alpha <- c(0.5, 1.2, -0.5)
p.det <- length(alpha)
mu.RE <- list()
p.RE <- list()
phi <- 3/.6
sigma.sq <- 2
kappa <- 0.3
sp <- FALSE
cov.model <- 'exponential'
dist <- 'NB'
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

kappa = kappa, mu.RE = mu.RE, p.RE = p.RE, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = cov.model,
family = 'NB')

y <- dat$y

72 predict.abund

X <- dat$X
X.p <- dat$X.p

abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')

det.covs <- list(det.cov.1 = X.p[, , 2], det.cov.2 = X.p[, , 3])

data.list <- list(y = y, abund.covs = abund.covs,
det.covs = det.covs)

Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.abund),

var = rep(100, p.abund)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)),
kappa.unif = c(0, 10))

Starting values
inits.list <- list(alpha = 0, beta = 0, kappa = kappa,

N = apply(y, 1, max, na.rm = TRUE))

tuning <- 0.5
n.batch <- 4
batch.length <- 25
n.burn <- 50
n.thin <- 1
n.chains <- 1

out <- NMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Posterior predictive check
ppc.out <- ppcAbund(out, fit.stat = 'chi-squared', group = 0)
summary(ppc.out)

predict.abund Function for prediction at new locations for univariate GLMMs

predict.abund 73

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘abund‘.

Usage

S3 method for class 'abund'
predict(object, X.0, ignore.RE = FALSE, z.0.samples, ...)

Arguments

object an object of class abund

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, replicate, and
covariate, respectively. Note that the first covariate should consist of all 1s for
the intercept if an intercept is included in the model. If random effects are in-
cluded in the abundance portion of the model, the levels of the random effects
at the new locations/time periods should be included as an element of the three-
dimensional array. The ordering of the levels should match the ordering used
to fit the data in abund. The covariates should be organized in the same order
as they were specified in the corresponding formula argument of abund. Names
of the third dimension (covariates) of any random effects in X.0 must match
the name of the random effects used to fit the model, if specified in the corre-
sponding formula argument of abund. See example below. If there is only one
replicate per location, the design matrix can be a two-dimensional matrix instead
of a three-dimensional array.

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a matrix with rows corresponding to MCMC samples and columns correspond-
ing to prediction locations containing the full posterior samples of the predicted
binary portion of a zero-inflated Gaussian model. In the context of abundance
models, this typically corresponds to estimates of the presence or absence of
the species at the location. When using spOccupancy to generate the first stage
samples of the zero-inflated Gaussian model, this is the object contained in the
z.0.samples object of the predition function for the spOccupancy object. Ig-
nored for all model types other than zero-inflated Gaussian.

... currently no additional arguments

Value

A list object of class predict.abund. The list consists of:

mu.0.samples a three-dimensional object of posterior predictive samples for the expected abun-
dance values with dimensions corresponding to posterior predictive sample, site,

74 predict.abund

and replicate. When there is no replication, this will be a two-dimensional ma-
trix. Note if an offset was used when fitting the model with abund, the abun-
dance values are reported per unit of the offset.

y.0.samples a three-dimensional object of posterior predictive samples for the abundance
values with dimensions corresponding to posterior predictive sample, site, and
replicate. When there is no replication, this will be a two-dimensional matrix.
These will be in the same units as mu.0.samples.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(1010)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(1, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.abund <- length(beta)
mu.RE <- list()
kappa <- 0.5
sp <- FALSE
family <- 'NB'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, family = 'NB')

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
Prediction covariates
X.0 <- dat$X[pred.indx, ,]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])

abund.covs <- list(int = X[, , 1],

predict.DS 75

abund.cov.1 = X[, , 2],
abund.cov.2 = X[, , 3],
abund.cov.3 = X[, , 4])

data.list <- list(y = y, covs = abund.covs)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 100),

kappa.unif = c(0.001, 10))
Starting values
inits.list <- list(beta = 0, kappa = kappa)

n.batch <- 5
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- abund(formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0)
mu.0.quants <- apply(out.pred$mu.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$mu[pred.indx], mu.0.quants[2,], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(mu.0.quants), max(mu.0.quants)))
segments(dat$mu[pred.indx], mu.0.quants[1,], dat$mu[pred.indx], mu.0.quants[3,])
lines(dat$mu[pred.indx], dat$mu[pred.indx])

predict.DS Function for prediction at new locations for single-species hierarchi-
cal distance sampling models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘DS‘. Prediction is possible for both the latent abundance state as well as detection.

76 predict.DS

Usage

S3 method for class 'DS'
predict(object, X.0, ignore.RE = FALSE, type = 'abundance', ...)

Arguments

object an object of class DS

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in DS. Columns should correspond to the
order of how covariates were specified in the corresponding formula argument
of DS. Column names of all variables must match the names of variables used
when fitting the model (for the intercept, use '(Intercept)').

ignore.RE logical value that specifies whether or not to remove random abundance (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to 0
and predictions will only be generated from the fixed effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict latent abundance and expected abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

... currently no additional arguments

Value

A list object of class predict.DS. When type = 'abundance', the list consists of:

mu.0.samples a coda object of posterior predictive samples for the expected abundance values,
or expected abundance per unit area (i.e., density) values when an offset was
used when fitting the model with DS().

N.0.samples a coda object of posterior predictive samples for the latent abundance values.
These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

sigma.0.samples

a coda object of posterior predictive samples for sigma (the parameter control-
ling detection probability).

The return object will include additional objects used for standard extractor functions.

predict.DS 77

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(123)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
sp <- FALSE
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'

dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, family = family,
offset = offset, transect = transect)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]

78 predict.DS

Detection covariates
X.p <- dat$X.p[-pred.indx,]
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
offset = offset)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 10),

alpha.normal = list(mean = 0,
var = 10),

kappa.unif = c(0, 100))
Starting values
inits.list <- list(alpha = 0,

beta = 0,
kappa = 1)

Tuning values
tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,

kappa = 0.2)

out <- DS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = 10,
batch.length = 25,
inits = inits.list,
family = 'NB',
det.func = 'halfnormal',
transect = 'point',
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 100,
n.burn = 100,
n.thin = 1,
n.chains = 1)

summary(out)

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0)
mu.0.quants <- apply(out.pred$mu.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$mu[pred.indx], mu.0.quants[2,], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(mu.0.quants), max(mu.0.quants)))
segments(dat$mu[pred.indx], mu.0.quants[1,], dat$mu[pred.indx], mu.0.quants[3,])

predict.lfMsAbund 79

lines(dat$mu[pred.indx], dat$mu[pred.indx])

predict.lfMsAbund Function for prediction at new locations for latent factor multivariate
GLMMs

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘lfMsAbund‘.

Usage

S3 method for class 'lfMsAbund'
predict(object, X.0, coords.0, ignore.RE = FALSE, z.0.samples, include.w = TRUE, ...)

Arguments

object an object of class lfMsAbund

X.0 the design matrix of covariates at the prediction locations. This can be either
a two-dimensional matrix with rows corresponding to sites and columns corre-
sponding to covariates, or can be a three-dimensional array, with dimensions
corresponding to site, replicate, and covariate, respectively. Note that the first
covariate should consist of all 1s for the intercept if an intercept is included in
the model. If random effects are included in the the model, the levels of the ran-
dom effects at the new locations/time periods should be included as an element
of the three-dimensional array. The ordering of the levels should match the or-
dering used to fit the data in lfMsAbund. The covariates should be organized in
the same order as they were specified in the corresponding formula argument of
lfMsAbund. Names of the third dimension (covariates) of any random effects in
X.0 must match the name of the random effects used to fit the model, if specified
in the corresponding formula argument of lfMsAbund. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a three-dimensional array with dimensions corresponding to MCMC samples,
species, and prediction locations. The array contains the full posterior samples
of the predicted binary portion of a Gaussian zero-inflated model. In the context
of abundance models, this typically corresponds to estimates of the presence or
absence of each species at the location. When using spOccupancy to generate
the first stage samples of the zi-Gaussian model, this is the object contained in
the z.0.samples object of the predition function for the spOccupancy object.
Ignored for all model types other than zi-Gaussian.

80 predict.lfMsAbund

include.w a logical value used to indicate whether the latent random effects should be
included in the predictions. By default, this is set to TRUE. If set to FALSE,
predictions are given using the covariates and any unstructured random effects
in the model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

Value

A list object of class predict.lfMsAbund. The list consists of:

mu.0.samples a three or four-dimensional object of posterior predictive samples for the ex-
pected abundance values with dimensions corresponding to posterior predictive
sample, species, site, and replicate. Note if an offset was used when fitting the
model with lfMsAbund, the abundance values are reported per unit of the offset.

y.0.samples a three or four-dimensional object of posterior predictive samples for the abun-
dance values with dimensions corresponding to posterior predictive sample,
species, site, and replicate. These will be in the same units as mu.0.samples.

w.0.samples a three-dimensional array of posterior predictive samples for the latent factors.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
mu.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)

predict.lfMsAbund 81

for (i in 1:p.abund) {
beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))

}
sp <- FALSE
kappa <- runif(n.sp, 0.1, 1)
factor.model <- TRUE
n.factors <- 3

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB',
factor.model = factor.model, n.factors = n.factors)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
Coordinates
coords <- dat$coords[-pred.indx,]
Prediction values
y.0 <- dat$y[, pred.indx, , drop = FALSE]
X.0 <- dat$X[pred.indx, , , drop = FALSE]
coords.0 <- dat$coords[pred.indx,]

Package all data into a list
covs <- list(int = X[, , 1],

abund.cov.1 = X[, , 2])
data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0,
beta = 0,
kappa = 0.5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1, lambda = 0.5, w = 0.5)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- lfMsAbund(formula = ~ abund.cov.1,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
n.factors = 1,

82 predict.lfMsDS

verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.lfMsDS Function for prediction at new locations for latent factor multi-species
hierarchical distance sampling models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘lfMsDS‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'lfMsDS'
predict(object, X.0, coords.0, ignore.RE = FALSE,

type = 'abundance', include.w = TRUE, ...)

Arguments

object an object of class lfMsDS

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in lfMsDS. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of lfMsDS. Column names must match the names of the variables used
to fit the model (for the intercept, use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

predict.lfMsDS 83

include.w a logical value used to indicate whether the latent random effects should be
included in the predictions. By default, this is set to TRUE. If set to FALSE,
predictions are given using the covariates and any unstructured random effects
in the model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

Value

A list object of class predict.lfMsDS. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values, or expected abundance values per unit area (i.e., density) values
when an offset was used when fitting the model with lfMsDS().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

sigma.0.samples

a three-dimensional array of posterior predictive samples for sigma (the param-
eter controlling detection probability).

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients

84 predict.lfMsDS

beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE
family <- 'NB'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- TRUE
n.factors <- 3

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model,
n.factors = n.factors)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]
Occupancy covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, , drop = FALSE]
X.p.0 <- dat$X.p[pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

predict.lfMsDS 85

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0,
var = 10),

kappa.unif = list(0, 100),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8, lambda = 1, w = 1)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- lfMsDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
n.factors = n.factors,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

86 predict.lfMsNMix

predict.lfMsNMix Function for prediction at new locations for latent factor multi-species
N-mixture models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘lfMsNMix‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'lfMsNMix'
predict(object, X.0, coords.0, ignore.RE = FALSE,

type = 'abundance', include.w = TRUE, ...)

Arguments

object an object of class lfMsNMix
X.0 the design matrix of covariates at the prediction locations. This should include a

column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in lfMsNMix. Columns should correspond
to the order of how covariates were specified in the corresponding formula argu-
ment of lfMsNMix. Column names must match the names of the variables used
to fit the model (for the intercept, use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system. This is not a required
argument, but can be used if some of the prediction sites are the same sites as
those used to fit the data, in which case the latent factors estimated during model
fitting can be used to improve the predictions. If predicting at different sites than
those used to fit the data, this argument will not have any influence on model
results.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

include.w a logical value used to indicate whether the latent random effects should be
included in the predictions. By default, this is set to TRUE. If set to FALSE,
predictions are given using the covariates and any unstructured random effects
in the model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

predict.lfMsNMix 87

Value

A list object of class predict.lfMsNMix. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values. Note these will be per unit area if an offset was used when fitting
the model with lfMsNMix().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0.2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

88 predict.lfMsNMix

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
family <- 'Poisson'
n.factors <- 3

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
sp = FALSE, family = 'Poisson', factor.model = TRUE,
n.factors = n.factors)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, ,]
Coordinates
coords <- dat$coords[-pred.indx,]
Prediction values
X.0 <- dat$X[pred.indx,]
mu.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx,]
Package all data into a list
abund.covs <- X[, 2, drop = FALSE]
colnames(abund.covs) <- c('abund.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
N = apply(y, c(1, 2), max, na.rm = TRUE))

Tuning values
tuning <- list(beta = 0.3, alpha = 0.3, lambda = 0.5, w = 0.5)
n.batch <- 4
batch.length <- 25
accept.rate <- 0.43

predict.msAbund 89

out <- lfMsNMix(abund.formula = ~ abund.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
family = 'Poisson',
n.factors = n.factors,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
tuning = tuning,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1)

summary(out, level = 'community')

Predict at new locations --
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.msAbund Function for prediction at new locations for multivariate GLMMs

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘msAbund‘.

Usage

S3 method for class 'msAbund'
predict(object, X.0, ignore.RE = FALSE, z.0.samples, ...)

Arguments

object an object of class msAbund
X.0 the design matrix of covariates at the prediction locations. This can be either

a two-dimensional matrix with rows corresponding to sites and columns corre-
sponding to covariates, or can be a three-dimensional array, with dimensions
corresponding to site, replicate, and covariate, respectively. Note that the first
covariate should consist of all 1s for the intercept if an intercept is included in
the model. If random effects are included in the the model, the levels of the
random effects at the new locations/time periods should be included as an ele-
ment of the three-dimensional array. The ordering of the levels should match
the ordering used to fit the data in msAbund. The covariates should be organized
in the same order as they were specified in the corresponding formula argument
of msAbund. Names of the third dimension (covariates) of any random effects in
X.0 must match the name of the random effects used to fit the model, if specified
in the corresponding formula argument of msAbund. See example below.

90 predict.msAbund

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a three-dimensional array with dimensions corresponding to MCMC samples,
species, and prediction locations. The array contains the full posterior samples
of the predicted binary portion of a Gaussian zero-inflated model. In the context
of abundance models, this typically corresponds to estimates of the presence or
absence of each species at the location. When using spOccupancy to generate
the first stage samples of the zi-Gaussian model, this is the object contained in
the z.0.samples object of the predition function for the spOccupancy object.
Ignored for all model types other than zi-Gaussian.

... currently no additional arguments

Value

A list object of class predict.msAbund. The list consists of:

mu.0.samples a three or four-dimensional object of posterior predictive samples for the ex-
pected abundance values with dimensions corresponding to posterior predictive
sample, species, site, and replicate. Note if an offset was used when fitting the
model with msAbund, the abundance values are reported per unit of the offset.

y.0.samples a three or four-dimensional object of posterior predictive samples for the abun-
dance values with dimensions corresponding to posterior predictive sample,
species, site, and replicate. These will be in the same units as mu.0.samples.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)

predict.msAbund 91

n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
mu.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- FALSE
kappa <- runif(n.sp, 0.1, 1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB')

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
Prediction values
y.0 <- dat$y[, pred.indx, , drop = FALSE]
X.0 <- dat$X[pred.indx, , , drop = FALSE]

Package all data into a list
covs <- list(int = X[, , 1], abund.cov.1 = X[, , 2])
data.list <- list(y = y, covs = covs)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0,
beta = 0,
kappa = 0.5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- msAbund(formula = ~ abund.cov.1,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,

92 predict.msDS

verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations
out.pred <- predict(out, X.0)
str(out.pred)

predict.msDS Function for prediction at new locations for multi-species hierarchical
distance sampling models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘msDS‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'msDS'
predict(object, X.0, ignore.RE = FALSE, type = 'abundance', ...)

Arguments

object an object of class msDS

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in msDS. Columns should correspond to
the order of how covariates were specified in the corresponding formula argu-
ment of msDS. Column names must match the names of the variables used to fit
the model (for the intercept, use '(Intercept)').

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

... currently no additional arguments

predict.msDS 93

Value

A list object of class predict.msDS. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values, or expected abundance values per unit area (i.e., density) values
when an offset was used when fitting the model with msDS().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

sigma.0.samples

a three-dimensional array of posterior predictive samples for sigma (the param-
eter controlling detection probability).

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)

94 predict.msDS

Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE
family <- 'Poisson'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- FALSE

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]
Occupancy covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, , drop = FALSE]
X.p.0 <- dat$X.p[pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0,
var = 10),

predict.msNMix 95

kappa.unif = list(0, 100),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- msDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0)
str(out.pred)

predict.msNMix Function for prediction at new locations for multi-species N-mixture
models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘msNMix‘. Prediction is possible for both the latent abundance state as well as detection.

96 predict.msNMix

Usage

S3 method for class 'msNMix'
predict(object, X.0, ignore.RE = FALSE, type = 'abundance', ...)

Arguments

object an object of class msNMix

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in msNMix. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of msNMix. Column names must match the names of the variables used
to fit the model (for the intercept, use '(Intercept)').

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

... currently no additional arguments

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

Value

A list object of class predict.msNMix. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values. Note these will be per unit area if an offset was used when fitting
the model with msNMix().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,

predict.msNMix 97

random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0.2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
family <- 'Poisson'

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
sp = FALSE, family = 'Poisson')

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, ,]
Prediction values
X.0 <- dat$X[pred.indx,]
mu.0 <- dat$psi[, pred.indx]
Package all data into a list
abund.covs <- X[, 2, drop = FALSE]
colnames(abund.covs) <- c('abund.cov')

98 predict.NMix

det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])

data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs)

Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
N = apply(y, c(1, 2), max, na.rm = TRUE))

Tuning values
tuning <- list(beta = 0.3, alpha = 0.3)
n.batch <- 4
batch.length <- 25
accept.rate <- 0.43

out <- msNMix(abund.formula = ~ abund.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
family = 'Poisson',
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
tuning = tuning,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1)

summary(out, level = 'community')

Predict at new locations --
out.pred <- predict(out, X.0)
str(out.pred)

predict.NMix Function for prediction at new locations for single-species N-mixture
models

predict.NMix 99

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘NMix‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'NMix'
predict(object, X.0, ignore.RE = FALSE, type = 'abundance', ...)

Arguments

object an object of class NMix

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in NMix. Columns should correspond to
the order of how covariates were specified in the corresponding formula argu-
ment of NMix. Column names of all variables must match the names of variables
used when fitting the model (for the intercept, use '(Intercept)').

ignore.RE logical value that specifies whether or not to remove random abundance (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to 0
and predictions will only be generated from the fixed effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict latent abundance and expected abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

... currently no additional arguments

Value

A list object of class predict.NMix. When type = 'abundance', the list consists of:

mu.0.samples a coda object of posterior predictive samples for the expected abundance values.
Note these will be per unit area if an offset was used when fitting the model with
NMix()

N.0.samples a coda object of posterior predictive samples for the latent abundance values.
These will be in the same units as mu.0.samples.

When type = 'detection', the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

The return object will include additional objects used for standard extractor functions.

100 predict.NMix

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

set.seed(100)
Simulate Data ---
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.abund <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

sp = FALSE)
Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, ,]

Package all data into a list
abund.covs <- X[, 2, drop = FALSE]
colnames(abund.covs) <- c('abund.cov')
det.covs <- list(det.cov = X.p[, , 2])
data.list <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs)

Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.abund),

var = rep(100, p.abund)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)),
kappa.unif = c(0.001, 10))

Initial values

predict.sfMsAbund 101

inits.list <- list(alpha = rep(0, p.det),
beta = rep(0, p.abund),
kappa = 0.5,
N = apply(y, 1, max, na.rm = TRUE))

n.batch <- 10
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- NMix(abund.formula = ~ abund.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
family = 'Poisson',
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov')
out.pred <- predict(out, X.0)
mu.0.quants <- apply(out.pred$mu.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$mu[pred.indx], mu.0.quants[2,], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(mu.0.quants), max(mu.0.quants)))
segments(dat$mu[pred.indx], mu.0.quants[1,], dat$mu[pred.indx], mu.0.quants[3,])
lines(dat$mu[pred.indx], dat$mu[pred.indx])

predict.sfMsAbund Function for prediction at new locations for spatial factor multivariate
GLMMs

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘sfMsAbund‘.

Usage

S3 method for class 'sfMsAbund'
predict(object, X.0, coords.0, n.omp.threads = 1,

102 predict.sfMsAbund

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
z.0.samples, include.sp = TRUE, ...)

Arguments

object an object of class sfMsAbund

X.0 the design matrix of covariates at the prediction locations. This can be either
a two-dimensional matrix with rows corresponding to sites and columns corre-
sponding to covariates, or can be a three-dimensional array, with dimensions
corresponding to site, replicate, and covariate, respectively. Note that the first
covariate should consist of all 1s for the intercept if an intercept is included in
the model. If random effects are included in the the model, the levels of the ran-
dom effects at the new locations/time periods should be included as an element
of the three-dimensional array. The ordering of the levels should match the or-
dering used to fit the data in sfMsAbund. The covariates should be organized in
the same order as they were specified in the corresponding formula argument of
sfMsAbund. Names of the third dimension (covariates) of any random effects in
X.0 must match the name of the random effects used to fit the model, if specified
in the corresponding formula argument of sfMsAbund. See example below.

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a three-dimensional array with dimensions corresponding to MCMC samples,
species, and prediction locations. The array contains the full posterior samples
of the predicted binary portion of a zero-inflated Gaussian model. In the context
of abundance models, this typically corresponds to estimates of the presence or
absence of each species at the location. When using spOccupancy to generate
the first stage samples of the zero-inflated Gaussian model, this is the object con-
tained in the z.0.samples object of the predition function for the spOccupancy
object. Ignored for all model types other than zero-inflated Gaussian.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

predict.sfMsAbund 103

Value

A list object of class predict.sfMsAbund. The list consists of:

mu.0.samples a three or four-dimensional object of posterior predictive samples for the ex-
pected abundance values with dimensions corresponding to posterior predictive
sample, species, site, and replicate. Note if an offset was used when fitting the
model with sfMsAbund, the abundance values are reported per unit of the offset.

y.0.samples a three or four-dimensional object of posterior predictive samples for the abun-
dance values with dimensions corresponding to posterior predictive sample,
species, site, and replicate. These will be in the same units as mu.0.samples.

w.0.samples a three-dimensional array of posterior predictive samples for the latent factors.
Array dimensions correspond to MCMC sample, latent factor, and site.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
mu.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- TRUE
kappa <- runif(n.sp, 0.1, 1)
factor.model <- TRUE

104 predict.sfMsAbund

n.factors <- 3
cov.model <- 'spherical'
phi <- runif(n.factors, 3 / 1, 3 / .1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB',
factor.model = factor.model, n.factors = n.factors,
phi = phi, cov.model = cov.model)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, , drop = FALSE]
Occupancy covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
Coordinates
coords <- dat$coords[-pred.indx,]
Prediction values
y.0 <- dat$y[, pred.indx, , drop = FALSE]
X.0 <- dat$X[pred.indx, , , drop = FALSE]
coords.0 <- dat$coords[pred.indx,]

Package all data into a list
covs <- list(int = X[, , 1], abund.cov.1 = X[, , 2])
data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
phi.unif = list(a = 3 / 1, b = 3 / .1),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0,
beta = 0,
kappa = 0.5,
phi = 3 / .5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1, lambda = 0.5, w = 0.5,
phi = 1)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- sfMsAbund(formula = ~ abund.cov.1,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
n.factors = 1,
verbose = TRUE,

predict.sfMsDS 105

n.neighbors = 5,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.sfMsDS Function for prediction at new locations for spatial factor multi-
species hierarchical distance sampling models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘sfMsDS‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'sfMsDS'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
type = 'abundance', include.sp = TRUE, ...)

Arguments

object an object of class sfMsDS

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in sfMsDS. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of sfMsDS. Column names must match the names of the variables used
to fit the model (for the intercept, use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

106 predict.sfMsDS

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords argument is not required.

... currently no additional arguments

Value

A list object of class predict.sfMsDS. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values, or expected abundance values per unit area (i.e., density) values
when an offset was used when fitting the model with sfMsDS().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial latent
factors.

When type = 'detection', the list consists of:

sigma.0.samples

a three-dimensional array of posterior predictive samples for sigma (the param-
eter controlling detection probability).

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

predict.sfMsDS 107

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
family <- 'Poisson'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- TRUE
n.factors <- 3
phi <- runif(n.factors, 3 / 1, 3 / .2)
cov.model <- 'exponential'

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model,
n.factors = n.factors)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]

108 predict.sfMsDS

Occupancy covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, , drop = FALSE]
X.p.0 <- dat$X.p[pred.indx, , drop = FALSE]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0, var = 10),
kappa.unif = list(0, 100),
phi.unif = list(3 / 1, 3 / .1),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1, phi = 3 / .5)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8, lambda = 1, w = 1, phi = 0.8)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- sfMsDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
cov.model = 'exponential',

predict.sfMsNMix 109

NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.sfMsNMix Function for prediction at new locations for spatial factor multi-
species N-mixture models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘sfMsNMix‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'sfMsNMix'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'abundance',
include.sp = TRUE, ...)

Arguments

object an object of class sfMsNMix

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in sfMsNMix. Columns should correspond
to the order of how covariates were specified in the corresponding formula argu-
ment of sfMsNMix. Column names must match the names of the variables used
to fit the model (for the intercept, use '(Intercept)').

110 predict.sfMsNMix

coords.0 the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict expected abundance and latent abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

Value

A list object of class predict.sfMsNMix. When type = 'abundance', the list consists of:

mu.0.samples a three-dimensional array of posterior predictive samples for the expected abun-
dance values. Note these will be per unit area if an offset was used when fitting
the model with sfMsNMix().

N.0.samples a three-dimensional array of posterior predictive samples for the latent abun-
dance values. These will be in the same units as mu.0.samples.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial latent
factors.

When type = 'detection', the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

predict.sfMsNMix 111

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0.2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
family <- 'Poisson'
n.factors <- 3
phi <- runif(n.factors, 3 / 1, 3 / .1)

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp,
beta = beta, alpha = alpha, sp = TRUE,
family = 'Poisson', factor.model = TRUE,
n.factors = n.factors, phi = phi, cov.model = 'exponential')

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx,]
Abundance covariates

112 predict.sfMsNMix

X <- dat$X[-pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, ,]
Coordinates
coords <- dat$coords[-pred.indx,]
Prediction values
X.0 <- dat$X[pred.indx,]
mu.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx,]
Package all data into a list
abund.covs <- X[, 2, drop = FALSE]
colnames(abund.covs) <- c('abund.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],

det.cov.2 = X.p[, , 3])
data.list <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

Initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),

alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / 1, 3 / .1))

Initial values
inits.list <- list(alpha.comm = 0,

beta.comm = 0,
beta = 0,
alpha = 0,
phi = 3 / .5,
tau.sq.beta = 1,
tau.sq.alpha = 1,
N = apply(y, c(1, 2), max, na.rm = TRUE))

Tuning values
tuning <- list(beta = 0.3, alpha = 0.3, lambda = 0.5, w = 0.5, phi = 1.5)
n.batch <- 4
batch.length <- 25
accept.rate <- 0.43

out <- sfMsNMix(abund.formula = ~ abund.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
family = 'Poisson',
n.factors = n.factors,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
cov.model = 'exponential',
n.neighbors = 5,
tuning = tuning,
priors = prior.list,

predict.spAbund 113

n.omp.threads = 1,
verbose = TRUE,
n.report = 1)

summary(out, level = 'community')

Predict at new locations --
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.spAbund Function for prediction at new locations for univariate spatial
GLMMs

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spAbund‘.

Usage

S3 method for class 'spAbund'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100,
ignore.RE = FALSE, z.0.samples, include.sp = TRUE, ...)

Arguments

object an object of class spAbund

X.0 the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, replicate, and
covariate, respectively. Note that the first covariate should consist of all 1s for
the intercept if an intercept is included in the model. If random effects are in-
cluded in the spAbundance portion of the model, the levels of the random effects
at the new locations/time periods should be included as an element of the three-
dimensional array. The ordering of the levels should match the ordering used to
fit the data in spAbund. The covariates should be organized in the same order as
they were specified in the corresponding formula argument of spAbund. Names
of the third dimension (covariates) of any random effects in X.0 must match
the name of the random effects used to fit the model, if specified in the corre-
sponding formula argument of spAbund. See example below. If there is only
one replicate per location, the design matrix can be a two-dimensional matrix
instead of a three-dimensional array.

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

114 predict.spAbund

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a matrix with rows corresponding to MCMC samples and columns correspond-
ing to prediction locations containing the full posterior samples of the predicted
binary portion of a zero-inflated Gaussian model. In the context of abundance
models, this typically corresponds to estimates of the presence or absence of
the species at the location. When using spOccupancy to generate the first stage
samples of the zero-inflated Gaussian model, this is the object contained in the
z.0.samples object of the predition function for the spOccupancy object. Ig-
nored for all model types other than zero-inflated Gaussian.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

Value

A list object of class predict.spAbund. The list consists of:

mu.0.samples a three-dimensional object of posterior predictive samples for the expected spAbun-
dance values with dimensions corresponding to posterior predictive sample, site,
and replicate. Note if an offset was used when fitting the model with spAbund,
the abundance values are reported per unit of the offset.

y.0.samples a three-dimensional object of posterior predictive samples for the spAbundance
values with dimensions corresponding to posterior predictive sample, site, and
replicate. These will be in the same units as mu.0.samples.

w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,

predict.spAbund 115

random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

Examples

set.seed(1010)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(1, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.spAbund <- length(beta)
mu.RE <- list()
kappa <- 0.5
sp <- TRUE
sigma.sq <- 0.5
phi <- 3 / .5
family <- 'NB'
cov.model = 'exponential'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, family = 'NB',
sigma.sq = sigma.sq, phi = phi, cov.model = cov.model)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx, , , drop = FALSE]
Prediction covariates
X.0 <- dat$X[pred.indx, ,]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])

abund.covs <- list(int = X[, , 1],
abund.cov.1 = X[, , 2],
abund.cov.2 = X[, , 3],
abund.cov.3 = X[, , 4])

data.list <- list(y = y, covs = abund.covs, coords = coords)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 100),

kappa.unif = c(0.001, 10))
Starting values
inits.list <- list(beta = 0, kappa = kappa)

116 predict.spDS

n.batch <- 5
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- spAbund(formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
n.neighbors = 5,
cov.model = cov.model,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0, coords.0)
mu.0.quants <- apply(out.pred$mu.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$mu[pred.indx], mu.0.quants[2,], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(mu.0.quants), max(mu.0.quants)))
segments(dat$mu[pred.indx], mu.0.quants[1,], dat$mu[pred.indx], mu.0.quants[3,])
lines(dat$mu[pred.indx], dat$mu[pred.indx])

predict.spDS Function for prediction at new locations for single-species spatially-
explicit hierarchical distance sampling models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spDS‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'spDS'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
type = 'abundance', include.sp = TRUE, ...)

predict.spDS 117

Arguments

object an object of class spDS

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spDS. Columns should correspond to
the order of how covariates were specified in the corresponding formula argu-
ment of spDS. Column names of all variables must match the names of variables
used when fitting the model (for the intercept, use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE logical value that specifies whether or not to remove random abundance (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to 0
and predictions will only be generated from the fixed effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict latent abundance and expected abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords argument is not required.

... currently no additional arguments

Value

A list object of class predict.spDS. When type = 'abundance', the list consists of:

mu.0.samples a coda object of posterior predictive samples for the expected abundance values,
or expected abundance per unit area (i.e., density) values when an offset was
used when fitting the model with spDS().

N.0.samples a coda object of posterior predictive samples for the latent abundance values.
These will be in the same units as mu.0.samples

w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.

118 predict.spDS

When type = 'detection', the list consists of:

sigma.0.samples

a coda object of posterior predictive samples for sigma (the parameter control-
ling detection probability).

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

Examples

set.seed(123)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
sp <- TRUE
phi <- 3 / .5
sigma.sq <- 0.8
cov.model <- 'exponential'
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'

predict.spDS 119

dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, family = family,
offset = offset, transect = transect, phi = phi, sigma.sq = sigma.sq,
cov.model = cov.model)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx,]
dist.breaks <- dat$dist.breaks
coords <- dat$coords[-pred.indx,]
coords.0 <- dat$coords[pred.indx,]

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 10),

alpha.normal = list(mean = 0,
var = 10),

kappa.unif = c(0, 100),
phi.unif = c(3 / 1, 3 / .1),
sigma.sq.ig = c(2, 1))

Starting values
inits.list <- list(alpha = 0,

beta = 0,
kappa = 1,
phi = 3 / .5,
sigma.sq = 1)

Tuning values
tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,

kappa = 0.2, phi = 1, w = 1)

out <- spDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = 10,
batch.length = 25,
inits = inits.list,
family = 'NB',
det.func = 'halfnormal',

120 predict.spNMix

transect = 'point',
cov.model = 'exponential',
NNGP = TRUE,
n.neighbors = 5,
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 100,
n.burn = 100,
n.thin = 1,
n.chains = 1)

summary(out)

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3')
out.pred <- predict(out, X.0, coords.0)
mu.0.quants <- apply(out.pred$mu.0.samples, 2, quantile, c(0.025, 0.5, 0.975))
plot(dat$mu[pred.indx], mu.0.quants[2,], pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(mu.0.quants), max(mu.0.quants)))
segments(dat$mu[pred.indx], mu.0.quants[1,], dat$mu[pred.indx], mu.0.quants[3,])
lines(dat$mu[pred.indx], dat$mu[pred.indx])

predict.spNMix Function for prediction at new locations for single-species spatial N-
mixture models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spNMix‘. Prediction is possible for both the latent abundance state as well as detection.

Usage

S3 method for class 'spNMix'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
type = 'abundance', include.sp = TRUE, ...)

Arguments

object an object of class spNMix

X.0 the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the abundance (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spNMix. Columns should correspond

predict.spNMix 121

to the order of how covariates were specified in the corresponding formula ar-
gument of spNMix. Column names of all variables must match the names of
variables used when fitting the model (for the intercept, use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE logical value that specifies whether or not to remove random abundance (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to 0
and predictions will only be generated from the fixed effects.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’abundance’ to predict latent abundance and expected abundance values (this
is the default), or ’detection’ to predict detection probability given new values
of detection covariates.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords argument is not required.

... currently no additional arguments

Value

A list object of class predict.spNMix. When type = 'abundance', the list consists of:

mu.0.samples a coda object of posterior predictive samples for the expected abundance values.
Note these will be per unit area if an offset was used when fitting the model with
NMix()

N.0.samples a coda object of posterior predictive samples for the latent abundance values.
These will be in the same units as mu.0.samples.

w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.

When type = 'detection', the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

The return object will include additional objects used for standard extractor functions.

122 predict.spNMix

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

Examples

set.seed(200)
Simulate Data ---
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0.5, 1.5)
p.abund <- length(beta)
alpha <- c(0.5, 1.2, -0.5)
p.det <- length(alpha)
mu.RE <- list()
p.RE <- list()
phi <- runif(1, 3 / 1, 3 / .1)
sigma.sq <- runif(1, 0.2, 1.5)
kappa <- 0.5
sp <- TRUE
cov.model <- 'exponential'
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

kappa = kappa, mu.RE = mu.RE, p.RE = p.RE, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = cov.model,
family = 'NB')

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .5), replace = FALSE)
y <- dat$y[-pred.indx,]
Abundance covariates
X <- dat$X[-pred.indx,]
Prediction covariates
X.0 <- dat$X[pred.indx,]
Detection covariates
X.p <- dat$X.p[-pred.indx, ,]
coords <- as.matrix(dat$coords[-pred.indx,])
coords.0 <- as.matrix(dat$coords[pred.indx,])
mu.0 <- dat$mu[pred.indx]
w.0 <- dat$w[pred.indx]

predict.spNMix 123

abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')

det.covs <- list(det.cov.1 = X.p[, , 2], det.cov.2 = X.p[, , 3])

data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.abund),

var = rep(100, p.abund)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)),
kappa.unif = c(0, 10))

Starting values
inits.list <- list(alpha = alpha,

beta = beta,
kappa = kappa,
phi = 3 / 0.5,
sigma.sq = 1,
N = apply(y, 1, max, na.rm = TRUE))

Tuning values
tuning.list <- list(phi = 0.5, kappa = 0.5, beta = 0.1, alpha = 0.1, w = 0.1)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- spNMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
NNGP = TRUE,
cov.model = 'spherical',
n.neighbors = 10,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

124 predict.svcAbund

Predict at new locations --
colnames(X.0) <- c('intercept', 'abund.cov')
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

predict.svcAbund Function for prediction at new locations for univariate Gaussian
spatially-varying coefficient models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcAbund‘.

Usage

S3 method for class 'svcAbund'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
z.0.samples, include.sp = TRUE, ...)

Arguments

object an object of class svcAbund
X.0 the design matrix of covariates at the prediction locations. This should include

a column of 1s for the intercept if an intercept is included in the model. If
random effects are included in the model, the levels of the random effects at
the new locations should be included as a column in the design matrix. The
ordering of the levels should match the ordering used to fit the data in svcAbund.
Columns should correspond to the order of how covariates were specified in the
corresponding formula argument of svcAbund. Column names of all variables
must match the names of variables used when fitting the model (for the intercept,
use '(Intercept)').

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.
ignore.RE logical value that specifies whether or not to remove unstructured random effects

from the subsequent predictions. If TRUE, random effects will be included. If
FALSE, random effects will be set to 0 and predictions will only be generated
from the fixed effects.

predict.svcAbund 125

z.0.samples a matrix with rows corresponding to MCMC samples and columns correspond-
ing to prediction locations containing the full posterior samples of the predicted
binary portion of a zero-inflated Gaussian model. In the context of abundance
models, this typically corresponds to estimates of the presence or absence of
the species at the location. When using spOccupancy to generate the first stage
samples of the zero-inflated Gaussian model, this is the object contained in the
z.0.samples object of the predition function for th spOccupancy object. Ig-
nored for all model types other than zero-inflated Gaussian.

include.sp a logical value used to indicate whether spatial random effects should be in-
cluded in the predictions. By default, this is set to TRUE. If set to FALSE, predic-
tions are given using the covariates and any unstructured random effects in the
model. If FALSE, the coords.0 argument is not required.

... currently no additional arguments

Value

A list object of class predict.svcAbund. When type = 'abundance', the list consists of:

mu.0.samples a coda object of posterior predictive samples for the expected abundance values.

y.0.samples a coda object of posterior predictive samples for the abundance values.

w.0.samples a three-dimensional array of posterior predictive samples for the spatially-varying
coefficients, with dimensions corresponding to MCMC iteration, coefficient,
and site.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>,

Examples

set.seed(1000)
Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
Occurrence --------------------------

126 predict.svcAbund

beta <- c(10, 0.5, -0.2, 0.75)
p <- length(beta)
mu.RE <- list()
Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.4, 4)
phi <- runif(p.svc, 3/1, 3/0.7)
tau.sq <- 2

Get all the data
dat <- simAbund(J.x = J.x, J.y = J.y, beta = beta, tau.sq = tau.sq,

mu.RE = mu.RE, sp = sp, svc.cols = svc.cols, family = 'Gaussian',
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi)

Prep the data for spAbundance ---
y <- dat$y
X <- dat$X
coords <- dat$coords

Subset data for prediction if desired
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y.0 <- y[pred.indx, drop = FALSE]
X.0 <- X[pred.indx, , drop = FALSE]
coords.0 <- coords[pred.indx,]
y <- y[-pred.indx, drop = FALSE]
X <- X[-pred.indx, , drop = FALSE]
coords <- coords[-pred.indx,]

Package all data into a list
covs <- cbind(X)
colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3')

Data list bundle
data.list <- list(y = y, covs = covs, coords = coords)
Priors
prior.list <- list(beta.normal = list(mean = 0, var = 1000),

sigma.sq.ig = list(a = 2, b = 1), tau.sq = c(2, 1),
sigma.sq.mu.ig = list(a = 2, b = 1),
phi.unif = list(a = 3 / 1, b = 3 / 0.1))

Starting values
inits.list <- list(beta = 0, alpha = 0,

sigma.sq = 1, phi = phi, tau.sq = 2, sigma.sq.mu = 0.5)
Tuning
tuning.list <- list(phi = 1)

n.batch <- 10
batch.length <- 25
n.burn <- 100
n.thin <- 1

predict.svcMsAbund 127

n.chains <- 3

out <- svcAbund(formula = ~ cov.1 + cov.2 + cov.3,
svc.cols = svc.cols,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
family = 'Gaussian',
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new values ---
out.pred <- predict(out, X.0, coords.0)

mu.0.means <- apply(out.pred$mu.0.samples, 2, mean)
mu.0 <- dat$mu[pred.indx]
plot(mu.0, mu.0.means, pch = 19)
abline(0, 1)

predict.svcMsAbund Function for prediction at new locations for multivariate spatially-
varying coefficient GLMMs

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcMsAbund‘.

Usage

S3 method for class 'svcMsAbund'
predict(object, X.0, coords.0, n.omp.threads = 1,

verbose = TRUE, n.report = 100, ignore.RE = FALSE,
z.0.samples, ...)

Arguments

object an object of class svcMsAbund

128 predict.svcMsAbund

X.0 the design matrix of covariates at the prediction locations. This can be either
a two-dimensional matrix with rows corresponding to sites and columns corre-
sponding to covariates, or can be a three-dimensional array, with dimensions
corresponding to site, replicate, and covariate, respectively. Note that the first
covariate should consist of all 1s for the intercept if an intercept is included in
the model. If random effects are included in the the model, the levels of the ran-
dom effects at the new locations/time periods should be included as an element
of the three-dimensional array. The ordering of the levels should match the or-
dering used to fit the data in svcMsAbund. The covariates should be organized
in the same order as they were specified in the corresponding formula argument
of svcMsAbund. Names of the third dimension (covariates) of any random ef-
fects in X.0 must match the name of the random effects used to fit the model, if
specified in the corresponding formula argument of svcMsAbund. See example
below.

coords.0 the spatial coordinates corresponding to X.0. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE logical value that specifies whether or not to remove unstructured random effects
from the subsequent predictions. If TRUE, unstructured random effects will be
included. If FALSE, unstructured random effects will be set to 0 and predictions
will only be generated from the fixed effects.

z.0.samples a three-dimensional array with dimensions corresponding to MCMC samples,
species, and prediction locations. The array contains the full posterior samples
of the predicted binary portion of a zero-inflated Gaussian model. In the context
of abundance models, this typically corresponds to estimates of the presence or
absence of each species at the location. When using spOccupancy to generate
the first stage samples of the zero-inflated Gaussian model, this is the object con-
tained in the z.0.samples object of the predition function for the spOccupancy
object. Ignored for all model types other than zero-inflated Gaussian.

... currently no additional arguments

Value

A list object of class predict.svcMsAbund. The list consists of:

mu.0.samples a three or four-dimensional object of posterior predictive samples for the ex-
pected abundance values with dimensions corresponding to posterior predictive
sample, species, site, and replicate.

predict.svcMsAbund 129

y.0.samples a three or four-dimensional object of posterior predictive samples for the abun-
dance values with dimensions corresponding to posterior predictive sample,
species, site, and replicate.

w.0.samples a four-dimensional array of posterior predictive samples for the spatial factors
for each spatially-varying coefficient. Dimensions correspond to MCMC sam-
ple, spatial factor, site, and spatially varying coefficient.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random effect corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- rep(1, J)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
mu.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- TRUE
factor.model <- TRUE
n.factors <- 2
svc.cols <- c(1, 2)
cov.model <- 'spherical'
tau.sq <- runif(n.sp, 0.1, 2)
phi <- runif(n.factors * length(svc.cols), 3 / 1, 3 / .1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, family = 'Gaussian', tau.sq = tau.sq,

130 predict.svcMsAbund

factor.model = factor.model, n.factors = n.factors,
phi = phi, cov.model = cov.model, svc.cols = svc.cols)

Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, drop = FALSE]
Occupancy covariates
X <- dat$X[-pred.indx, , drop = FALSE]
Coordinates
coords <- dat$coords[-pred.indx,]
Prediction values
y.0 <- dat$y[, pred.indx, drop = FALSE]
X.0 <- dat$X[pred.indx, , drop = FALSE]
coords.0 <- dat$coords[pred.indx,]

Package all data into a list
covs <- data.frame(abund.cov.1 = X[, 2])
data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

tau.sq.ig = list(a = .01, b = .01),
phi.unif = list(a = 3 / 1, b = 3 / .1),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0,
beta = 0,
kappa = 0.5,
tau.sq = 1,
phi = 3 / .5,
tau.sq.beta = 1)

tuning.list <- list(kappa = 0.3, beta = 0.1, lambda = 0.5, w = 0.5,
phi = 1)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- svcMsAbund(formula = ~ abund.cov.1,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
svc.cols = c(1, 2),
n.factors = n.factors,
cov.model = 'exponential',
family = 'Gaussian',
verbose = TRUE,
n.neighbors = 5,
n.report = 1,

sfMsAbund 131

n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Predict at new locations
out.pred <- predict(out, X.0, coords.0)
str(out.pred)

sfMsAbund Function for Fitting Spatial Factor Multivariate Abundance GLMMs

Description

The function sfMsAbund fits multivariate spatial abundance GLMMs with species correlations (i.e.,
a spatially-explicit abundace-based joint species distribution model). We use a spatial factor mod-
eling approach. Currently, models are implemented using a Nearest Neighbor Gaussian Process.
Future development may allow for running the models using full Gaussian Processes.

Usage

sfMsAbund(formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors,
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, z,
coords, and offset. y is a two or three-dimensional array of observed count
data. The first dimension of the array is equal to the number of species and
the second dimension is equal to the number of sites. If specified as a three-
dimensional array, the third dimension corresponds to replicate observations at
each site (e.g., sub-samples, repeated sampling over multiple seasons). covs is a
list containing the variables used in the model. If a data frame, each row of covs
is a site and each column is a variable. If a list, each list element is a different
covariate, which can be site-level or observation-level. Site-level covariates are
specified as a vector of length J , while observation-level covariates are specified
as a matrix or data frame with the number of rows equal to J and number of
columns equal to the maximum number of replicate observations at a given site.
coords is a J×2 matrix of the observation coordinates. Note that spAbundance
assumes coordinates are specified in a projected coordinate system. For zero-
inflated Gaussian models, the tag z is used to specify the binary component of

132 sfMsAbund

the model and should have the same dimensions as y. offset is an offset to use
in the abundance model (e.g., an area offset). This can be either a single value, a
vector with an offset for each site (e.g., if survey area differed in size), or a site
x replicate matrix if more than one count is available at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, sigma.sq.mu, kappa, phi, lambda, nu, and tau.sq. nu is
only specified if cov.model = "matern", kappa is only specified if family =
'NB', tau.sq is only specified for Gaussian and zero-inflated Gaussian models,
and sigma.sq.mu is only specified if random effects are included in formula.
The value portion of each tag is the parameter’s initial value. See priors de-
scription for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, sigma.sq.mu, kappa.unif, phi.unif, nu.unif, and tau.sq.ig.
Community-level (beta.comm) regression coefficients are assumed to follow a
normal distribution. The hyperparameters of the normal distribution are passed
as a list of length two with the first and second elements corresponding to the
mean and variance of the normal distribution, which are each specified as vec-
tors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means
are set to 0 and prior variances to 100. Community-level variance parameters
(tau.sq.beta) are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale pa-
rameters, which are each specified as vectors of length equal to the number of
coefficients to be estimated or a single value if priors are the same for all parame-
ters. If not specified, prior shape and scale parameters are set to 0.1. The spatial
factor model fits n.factors independent spatial processes. The spatial decay
phi and smoothness nu parameters for each latent factor are assumed to follow
Uniform distributions. The hyperparameters of the Uniform are passed as a list
with two elements, with both elements being vectors of length n.factors corre-
sponding to the lower and upper support, respectively, or as a single value if the
same value is assigned for all factors. The priors for the factor loadings matrix
lambda are fixed following the standard spatial factor model to ensure parameter
identifiability (Christensen and Amemlya 2002). The upper triangular elements
of the n.sp x n.factors matrix are fixed at 0 and the diagonal elements are
fixed at 1. The lower triangular elements are assigned a standard normal prior
(i.e., mean 0 and variance 1). sigma.sq.mu are the random effect variances
random effects, respectively, and are assumed to follow an inverse Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances. kappa is the negative binomial dispersion pa-
rameter for each species and is assumed to follow a uniform distribution. The
hyperparameters of the uniform distribution are passed as a list of length two
with first and second elements corresponding to the lower and upper bounds

sfMsAbund 133

of the uniform distribution, respectively, which are each specified as vectors of
length equal to the number of species or of length one if priors are the same for
all species-specific dispersion parameters. tau.sq is the species-specific resid-
ual variance for Gaussian (or zero-inflated Gaussian) models, and it is assigned
an inverse-Gamma prior. The hyperparameters of the inverse-Gamma are passed
as a list of length two, with the first and second element corresponding to the
shape and scale parameters, respectively, which are each specified as vectors of
length equal to the number of species or a single value if priors are the same for
all species.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial tuning variance of the adaptive sampler for the given parameter. Valid tags
include beta, alpha, beta.star (the abundance random effect values), kappa,
phi, lambda. See Roberts and Rosenthal (2009) for details. Note that only phi
and nu are tuned for Gaussian or zero-inflated Gaussian models.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
factor models, only NNGP = TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.factors the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and the number of
species in the modeled community.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the abundance. Currently supports 'NB' (negative
binomial), 'Poisson' (Poisson), 'Gaussian' (Gaussian), and 'zi-Gaussian'
(zero-inflated Gaussian).

134 sfMsAbund

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

save.fitted logical value indicating whether or not fitted values and likelihood values should
be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

... currently no additional arguments

Value

An object of class sfMsAbund that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level regression coeffi-
cients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.
Only included when family = 'Gaussian' or family = 'zi-Gaussian'.

theta.samples a coda object of posterior samples for the spatial correlation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings.

y.rep.samples a three or four-dimensional array of posterior samples for the fitted (replicate)
values for each species with dimensions corresponding to MCMC sample, species,
site, and replicate.

sfMsAbund 135

mu.samples a three or four-dimensional array of posterior samples for the expected abun-
dance values for each species with dimensions corresponding to MCMC sam-
ples, species, site, and replicate.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor. Array dimensions correspond to MCMC sample, latent factor, then
site.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Christensen, W. F., and Amemiya, Y. (2002). Latent variable analysis of multivariate spatial data.
Journal of the American Statistical Association, 97(457), 302-317.

Examples

set.seed(408)
J.x <- 8
J.y <- 8

https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.18637/jss.v067.i01

136 sfMsAbund

J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Random effects (two random intercepts)
mu.RE <- list(levels = c(10, 15),

sigma.sq.mu = c(0.43, 0.5))
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- TRUE
n.factors <- 2
factor.model <- TRUE
phi <- runif(n.factors, 3/1, 3 / .1)
kappa <- runif(n.sp, 0.1, 1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB',
factor.model = factor.model, phi = phi,
cov.model = 'exponential', n.factors = n.factors)

y <- dat$y
X <- dat$X
X.re <- dat$X.re
coords <- dat$coords

Package all data into a list
covs <- list(int = X[, , 1],

abund.cov.1 = X[, , 2],
abund.factor.1 = X.re[, , 1],
abund.factor.2 = X.re[, , 2])

data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

kappa.unif = list(a = 0, b = 10),
phi.unif = list(a = 3 / 1, b = 3 / .1),
tau.sq.beta.ig = list(a = .1, b = .1))

inits.list <- list(beta.comm = 0, beta = 0, kappa = 0.5,
tau.sq.beta = 1, phi = 3 / 0.5)

Small
n.batch <- 2
batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- sfMsAbund(formula = ~ abund.cov.1 + (1 | abund.factor.1) +
(1 | abund.factor.2),

sfMsDS 137

data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
NNGP = TRUE,
cov.model = 'exponential',
n.neighbors = 5,
n.factors = n.factors,
batch.length = batch.length,
n.omp.threads = 3,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

sfMsDS Function for Fitting Spatial Factor Multi-Species Hierarchical Dis-
tance Sampling Models

Description

Function for fitting spatial factor multi-species hierarchical distance sampling models.

Usage

sfMsDS(abund.formula, det.formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors,
n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', transect = 'line', det.func = 'halfnormal',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

138 sfMsDS

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
dist.breaks, and offset. y is a three-dimensional array of observed count
data with first dimension equal to the number of species, second dimension equal
to the number of sites, and third dimension equal to the maximum number of
replicates at a given site. covs is a matrix or data frame containing the variables
used in the abundance and/or the detection portion of the model, with J rows
for each column (variable). dist.breaks is a vector of distances that denote
the breakpoints of the distance bands. dist.breaks should have length equal
to the third dimension of y plus one. offset is an offset that can be used to
scale estimates from abundance per transect to density per some desired unit
of measure. This can be either a single value or a vector with an offset value
for each site (e.g., if transects differ in length). coords is a matrix or data
frame with two columns that contain the spatial coordinates of each site. Note
that spAbundance assumes coordinates are specified in a projected coordinate
system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
phi, nu, lambda, w, kappa, and N. sigma.sq.mu and sigma.sq.p are only rel-
evant when including random effects in the abundance and detection portion of
the model, respectively. kappa is only relevant when family = 'NB'. nu is only
relevant if cov.model = "matern". The value portion of each tag is the parame-
ter’s initial value. See priors description for definition of each parameter name.
Additionally, the tag fix can be set to TRUE to fix the starting values across all
chains. If fix is not specified (the default), starting values are varied randomly
across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, kappa.unif, phi.unif, and nu.unif. Community-level abun-
dance (beta.comm) and detection (alpha.comm) regression coefficients are as-
sumed to follow a normal distribution. The hyperparameters of the normal dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or of length one if priors are the same for all coefficients. If not specified,
prior means are set to 0 and prior variances are set to 100. Community-level vari-
ance parameters for abundance (tau.sq.beta) and detection (tau.sq.alpha)
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse gamma distribution are passed as a list of length two with the first
and second elements corresponding to the shape and scale parameters, which
are each specified as vectors of length equal to the number of coefficients to
be estimated or a single value if all parameters are assigned the same prior. If
not specified, prior shape and scale parameters are set to 0.1. sigma.sq.mu
and sigma.sq.p are the random effect variances for any abundance or detection
random effects, respectively, and are assumed to follow an inverse Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random effects or of length one if priors are the same for

sfMsDS 139

all random effect variances. kappa is the negative binomial dispersion param-
eter for each species and is assumed to follow a uniform distribution. The hy-
perparameters of the uniform distribution are passed as a list of length two with
first and second elements corresponding to the lower and upper bounds of the
uniform distribution, respectively, which are each specified as vectors of length
equal to the number of species or of length one if priors are the same for all
species-specific dispersion parameters. The spatial factor model fits n.factors
independent spatial processes. The spatial decay phi and smoothness nu pa-
rameters for each latent factor are assumed to follow Uniform distributions. The
hyperparameters of the Uniform are passed as a list with two elements, with both
elements being vectors of length n.factors corresponding to the lower and up-
per support, respectively, or as a single value if the same value is assigned for
all factors. The priors for the factor loadings matrix lambda are fixed following
the standard spatial factor model to ensure parameter identifiability (Christensen
and Amemlya 2002). The upper triangular elements of the n.sp x n.factors
matrix are fixed at 0 and the diagonal elements are fixed at 1. The lower trian-
gular elements are assigned a standard normal prior (i.e., mean 0 and variance
1).

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are beta, alpha, lambda (the
latent factor loadings), w (the latent factors), beta.star (the abundance random
effect values), alpha.star (the detection random effect values), and kappa. See
Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a Gaussian Process be addded in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

140 sfMsDS

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class sfMsDS that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

sfMsDS 141

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

kappa.samples a coda object of posterior samples for the species level abundance dispersion
parameters. Only included when family = 'NB'.

theta.samples a coda object of posterior samples for the spatial correlation parameters for each
spatial factor.

lambda.samples a coda object of posterior samples for the spatial factor loadings.

w.samples a three-dimensional array of posterior samples for the latent effects for each
spatial factor. Array dimensions correspond to MCMC sample, spatial factor,
then site.

N.samples a three-dimensional array of posterior samples for the latent abundance values
for each species. Note that these values always represent transect-level abun-
dance, even when an offset is supplied. Array dimensions correspond to MCMC
sample, species, then site.

mu.samples a three-dimensional array of posterior samples for the latent expected abundance
values for each species. When an offset is supplied in the data object, these
correspond to expected abundance per unit area (i.e., density). Array dimensions
correspond to MCMC sample, species, then site.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

y.rep.samples a four-dimensional array of fitted values. Array dimensions correspond to MCMC
samples, species, sites, and distance band.

pi.samples a four-dimensional array of cell-specific detection probabilities. Array dimen-
sions correspond to MCMC samples, species, sites, and distance band.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

142 sfMsDS

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Sollmann, R., Gardner, B., Williams, K. A., Gilbert, A. T., & Veit, R. R. (2016). A hierarchical dis-
tance sampling model to estimate abundance and covariate associations of species and communities.
Methods in Ecology and Evolution, 7(5), 529-537.

Examples

set.seed(210)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

sfMsDS 143

}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- TRUE
family <- 'Poisson'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- TRUE
n.factors <- 3
phi <- runif(n.factors, 3 / 1, 3 / .2)
cov.model <- 'exponential'

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model,
n.factors = n.factors)

y <- dat$y
X <- dat$X
X.p <- dat$X.p
coords <- dat$coords
dist.breaks <- dat$dist.breaks

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 10),

alpha.comm.normal = list(mean = 0, var = 10),
kappa.unif = list(0, 100),
phi.unif = list(3 / 1, 3 / .1),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

Starting values
inits.list <- list(alpha.comm = 0, beta.comm = 0, beta = 0,

alpha = 0, kappa = 1, phi = 3 / .5)

tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,
kappa = 0.8, lambda = 1, w = 1, phi = 0.8)

n.batch <- 4
batch.length <- 25

144 sfMsNMix

n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- sfMsDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
family = 'Poisson',
det.func = 'halfnormal',
transect = transect,
tuning = tuning,
cov.model = 'exponential',
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 10,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

sfMsNMix Function for Fitting Spatial Factor Multi-species N-mixture Models

Description

Function for fitting spatial multi-species N-mixture models with species correlations (i.e., an abundance-
based spatially-explicit joint species distribution model with imperfect detection). We use Nearest
Neighbor Gaussian Processes and a spatial factor modeling approach to achieve dimension reduci-
tion.

Usage

sfMsNMix(abund.formula, det.formula, data, inits, priors,
tuning, cov.model = 'exponential', NNGP = TRUE, n.neighbors = 15,

search.type = 'cb', n.factors, n.batch, batch.length, accept.rate = 0.43,
family = 'Poisson', n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

sfMsNMix 145

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, abund.covs,
det.covs, coords, and offset. y is a three-dimensional array of observed
count data with first dimension equal to the number of species, second dimen-
sion equal to the number of sites, and third dimension equal to the maximum
number of replicates at a given site. abund.covs is a matrix or data frame con-
taining the variables used in the abundance portion of the model, with J rows for
each column (variable). det.covs is a list of variables included in the detection
portion of the model. Each list element is a different detection covariate, which
can be site-level or observational-level. Site-level covariates are specified as a
vector of length J while observation-level covariates are specified as a matrix
or data frame with the number of rows equal to J and number of columns equal
to the maximum number of replicates at a given site. coords is a matrix or data
frame with two columns that contain the spatial coordinates of each site. Note
that spAbundance assumes coordinates are specified in a projected coordinate
system. offset is an offset to use in the abundance model (e.g., an area offset).
This can be either a single value or a vector with an offset for each site (e.g., if
survey area differed in size).

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.mu, sigma.sq.p,
phi, nu, lambda, w, kappa, and N. sigma.sq.mu and sigma.sq.p are only rel-
evant when including random effects in the abundance and detection portion of
the model, respectively. kappa is only relevant when family = 'NB'. nu is only
relevant if cov.model = "matern". The value portion of each tag is the parame-
ter’s initial value. See priors description for definition of each parameter name.
Additionally, the tag fix can be set to TRUE to fix the starting values across all
chains. If fix is not specified (the default), starting values are varied randomly
across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig, sigma.sq.mu.ig,
sigma.sq.p.ig, kappa.unif, phi.unif, and nu.unif. Community-level abun-
dance (beta.comm) and detection (alpha.comm) regression coefficients are as-
sumed to follow a normal distribution. The hyperparameters of the normal dis-
tribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or of length one if priors are the same for all coefficients. If not specified,
prior means are set to 0 and prior variances for the abundance coefficients are set
to 100 and for the detection coefficients are set to 2.72. Community-level vari-

146 sfMsNMix

ance parameters for abundance (tau.sq.beta) and detection (tau.sq.alpha)
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse gamma distribution are passed as a list of length two with the first
and second elements corresponding to the shape and scale parameters, which
are each specified as vectors of length equal to the number of coefficients to
be estimated or a single value if all parameters are assigned the same prior. If
not specified, prior shape and scale parameters are set to 0.1. sigma.sq.mu
and sigma.sq.p are the random effect variances for any abundance or detection
random effects, respectively, and are assumed to follow an inverse Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random effects or of length one if priors are the same for
all random effect variances. kappa is the negative binomial dispersion param-
eter for each species and is assumed to follow a uniform distribution. The hy-
perparameters of the uniform distribution are passed as a list of length two with
first and second elements corresponding to the lower and upper bounds of the
uniform distribution, respectively, which are each specified as vectors of length
equal to the number of species or of length one if priors are the same for all
species-specific dispersion parameters. The spatial factor model fits n.factors
independent spatial processes. The spatial decay phi and smoothness nu pa-
rameters for each latent factor are assumed to follow Uniform distributions. The
hyperparameters of the Uniform are passed as a list with two elements, with both
elements being vectors of length n.factors corresponding to the lower and up-
per support, respectively, or as a single value if the same value is assigned for
all factors. The priors for the factor loadings matrix lambda are fixed following
the standard spatial factor model to ensure parameter identifiability (Christensen
and Amemlya 2002). The upper triangular elements of the n.sp x n.factors
matrix are fixed at 0 and the diagonal elements are fixed at 1. The lower trian-
gular elements are assigned a standard normal prior (i.e., mean 0 and variance
1).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are beta, alpha, beta.star
(the abundance random effect values), alpha.star (the detection random effect
values), phi, nu, lambda (the latent factor loadings), w (the latent factors), and
kappa. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a Gaussian Process may be added in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

sfMsNMix 147

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.factors the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class sfMsNMix that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level abundance regression
coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

148 sfMsNMix

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

tau.sq.alpha.samples

a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

lambda.samples a coda object of posterior samples for the spatial factor loadings.
theta.samples a coda object of posterior samples for the spatial correlation parameters for each

spatial factor.
w.samples a three-dimensional array of posterior samples for the latent effects for each

latent factor.
kappa.samples a coda object of posterior samples for the species level abundance dispersion

parameters. Only included when family = 'NB'.
N.samples a three-dimensional array of posterior samples for the latent abundance values

for each species.
mu.samples a three-dimensional array of posterior samples for the latent expected abundance

values for each species.
sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

sfMsNMix 149

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Christensen, W. F., and Amemiya, Y. (2002). Latent variable analysis of multivariate spatial data.
Journal of the American Statistical Association, 97(457), 302-317.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Yamaura, Y., Royle, J. A., Shimada, N., Asanuma, S., Sato, T., Taki, H., & Makino, S. I. (2012).
Biodiversity of man-made open habitats in an underused country: a class of multispecies abundance
models for count data. Biodiversity and Conservation, 21(6), 1365-1380.

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(5, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
Abundance
beta.mean <- c(0, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Detection
alpha.mean <- c(0, 0.5, 0.8)
tau.sq.alpha <- c(0.2, 1, 1.5)
p.det <- length(alpha.mean)
Random effects
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3
phi <- runif(n.factors, 3 / 1, 3 / .2)

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

150 sfMsNMix

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta, alpha = alpha,
mu.RE = mu.RE, p.RE = p.RE, family = 'Poisson',
factor.model = TRUE, n.factors = n.factors, sp = TRUE, phi = phi,
cov.model = 'exponential')

y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.re <- dat$X.re
X.p.re <- dat$X.p.re
coords <- dat$coords

Package all data into a list
abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')
det.covs <- list(det.cov.1 = as.data.frame(X.p[, , 2]),

det.cov.2 = as.data.frame(X.p[, , 3]))
data.list <- list(y = y,

abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

prior.list <- list(beta.comm.normal = list(mean = rep(0, p.abund),
var = rep(100, p.abund)),

alpha.comm.normal = list(mean = rep(0, p.det),
var = rep(2.72, p.det)),

tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3 / 1, 3 / .1))

inits.list <- list(beta.comm = 0, alpha.comm = 0,
beta = 0, alpha = 0,
tau.sq.beta = 0.5, tau.sq.alpha = 0.5,
N = apply(y, c(1, 2), max, na.rm = TRUE))

tuning.list <- list(beta = 0.5, alpha = 0.5, lambda = 0.5, w = 0.5,
phi = 1)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- sfMsNMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
batch.length = batch.length,
n.omp.threads = 1,
n.factors = n.factors,
cov.model = 'exponential',
n.neighbors = 5,

simAbund 151

verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out, level = 'community')

simAbund Simulate Univariate Data for Testing GLMMs

Description

The function simAbund simulates univariate data without imperfect detection for simulation studies,
power assessments, or function testing related to GLMMs. Data can be optionally simulated with
a spatial Gaussian Process in the model. Non-spatial random effects can also be included in the
model.

Usage

simAbund(J.x, J.y, n.rep, n.rep.max, beta, kappa, tau.sq, mu.RE = list(),
offset = 1, sp = FALSE, svc.cols = 1, cov.model, sigma.sq, phi, nu,
family = 'Poisson', z, trend = FALSE, x.positive = FALSE, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.rep a numeric vector of length J = J.x × J.y indicating the number of replicate
surveys at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

beta a numeric vector containing the intercept and regression coefficient parameters
for the abundance model.

kappa a single numeric value containing the dispersion parameter for the abundance
portion of the model. Only relevant when family = 'NB'.

tau.sq a single numeric value containing the residual variance parameter of the Gaus-
sian distribution. Only relevant when family = 'Gaussian' or family = 'zi-Gaussian'.

152 simAbund

mu.RE a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.mu. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.mu is
a vector of length equal to the number of distinct random intercepts to include
in the model and contains the variances for each random effect. A third op-
tional tage is beta.indx, which is a numeric vector with length equal to the
number of distinct random intercepts. The values in beta.indx denote the
intercept/covariate for which you wish to simulate a random intercept/slope.
Numeric values correspond to the intercept/covaraite in beta. If mu.RE is not
specified, no random effects are included in the abundance portion of the model.

sp a logical value indicating whether to simulate a spatially-explicit model with a
Gaussian process. By default set to FALSE.

offset either a single numeric value, a vector of length J, or a site by replicate matrix
that contains the offset for each data point in the data set.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the abundance data. Supported covariance model
key words are: "exponential", "matern", "spherical", and "gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

family the distribution to use for the data. Currently supports 'NB' (negative binomial),
'Poisson', 'Gaussian', and 'zi-Gaussian'.

z a vector of length J containing the binary presence/absence portion of a zero-
inflated Gaussian model. Only relevant when family = 'zi-Gaussian'.

trend a logical value indicating whether a trend should be included when simulating
relative abundance. If TRUE, the second covariate will be simulated as a trend
over the replicate surveys for a given site. Only relevant when n.rep is not 1 at
every site.

x.positive a logical value indicating whether the simulated covariates should be simulated
as random standard normal covariates (x.positive = FALSE) or restricted to
positive values using a uniform distribution with lower bound 0 and upper bound
1 (x.positive = TRUE).

... currently no additional arguments

Value

A list comprised of:

simDS 153

X a three-dimensional numeric design array of covariates with dimensions corre-
sponding to sites, replicates, and number of covariates (including an intercept)
for the model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

w a matrix of the spatial random effects. Only used to simulate data when sp
= TRUE. If simulating data with spatially-varying coefficients, the number of
columns equals the number of spatially-varying coefficients and each row cor-
responds to a site.

mu a J x max(n.rep) matrix of the expected abundance values for each site and
replicate survey.

y a J x max(n.rep) matrix of the raw count data for each site and replicate com-
bination.

X.re a numeric three-dimensional array containing the levels of any abundance ran-
dom effect included in the model. Only relevant when abundance random effects
are specified in mu.RE.

beta.star a numeric vector that contains the simulated abundance random effects for each
given level of the random effects included in the abundance model. Only rele-
vant when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

Examples

set.seed(401)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.abund <- length(beta)
mu.RE <- list(levels = c(30), sigma.sq.mu = c(1.3))
kappa <- 0.5
sp <- FALSE
family <- 'NB'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, family = 'NB')

simDS Simulate Single-Species Distance Sampling Data

154 simDS

Description

The function simDS simulates single-species distance sampling data for simulation studies, power
assessments, or function testing. Data can be optionally simulated with a spatial Gaussian Process
in the abundance portion of the model. Non-spatial random effects can also be included in the
detection or abundance portions of the distance sampling model.

Usage

simDS(J.x, J.y, n.bins, bin.width, beta, alpha, det.func, transect = 'line',
kappa, mu.RE = list(), p.RE = list(), offset = 1,
sp = FALSE, cov.model, sigma.sq, phi, nu, family = 'Poisson', ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.bins a single numeric value indicating the number of distance bins from which to
generate data.

bin.width a vector of length n.bins indicating the length of each bin. Lengths can be
different for each distance bin or the same across bins.

beta a numeric vector containing the intercept and regression coefficient parameters
for the abundance portion of the single-species distance sampling model.

alpha a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species distance sampling model.

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

kappa a single numeric value containing the dispersion parameter for the abundance
portion of the hierarchical distance sampling model. Only relevant when family
= 'NB'.

mu.RE a list used to specify the non-spatial random intercepts included in the abundance
portion of the model. The list must have two tags: levels and sigma.sq.mu.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.mu is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the abundance
portion of the model.

p.RE a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.

simDS 155

levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

offset either a single numeric value or a vector of length J that contains the offset for
each location in the data set.

sp a logical value indicating whether to simulate a spatially-explicit HDS model
with a Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent abundance values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

... currently no additional arguments

Value

A list comprised of:

X a J × p.abund numeric design matrix for the abundance portion of the model.

X.p a J × p.abund numeric design matrix for the detection portion of the model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

w a J × 1 matrix of the spatial random effects. Only used to simulate data when
sp = TRUE.

mu a J × 1 matrix of the expected abundance values for each site.

N a length J vector of the latent abundances at each site.

p a length J vector of the detection probabilities at each site.

pi.full a J x n.bins + 1 vector of the cell-specific detection probabilities for each site,
where the last column indicates the probability of not detecting an individual at
that site.

y a J x max(n.bins) matrix of the raw count data for each site and distance bin.

X.p.re a numeric matrix containing the levels of any detection random effect included
in the model. Only relevant when detection random effects are specified in p.RE.

156 simDS

X.re a numeric matrix containing the levels of any abundance random effect included
in the model. Only relevant when abundance random effects are specified in
mu.RE.

alpha.star a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.

beta.star a numeric vector that contains the simulated abundance random effects for each
given level of the random effects included in the HDS model. Only relevant
when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(110)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
sp <- FALSE
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'

dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect)

simMsAbund 157

simMsAbund Simulate Multivariate Data for Testing GLMMs

Description

The function simMsAbund simulates multivariate data without imperfect detection for simulation
studies, power assessments, or function testing related to GLMMs. Data can be optionally simulated
with a spatial Gaussian Process in the model, as well as an option to allow for species correlations
using a factor modeling approach. Non-spatial random effects can also be included in the abundance
portions of the model.

Usage

simMsAbund(J.x, J.y, n.rep, n.rep.max, n.sp, beta, kappa, tau.sq, mu.RE = list(),
offset = 1, sp = FALSE, cov.model, svc.cols = 1,
sigma.sq, phi, nu, family = 'Poisson',
factor.model = FALSE, n.factors, z, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.rep a numeric vector of length J = J.x × J.y indicating the number of replicate
surveys at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

n.sp a single numeric value indicating the number of species to simulate count data.

beta a numeric matrix with n.sp rows containing the intercept and regression coeffi-
cient parameters for the model. Each row corresponds to the regression coeffi-
cients for a given species.

kappa a numeric vector of length n.sp containing the dispersion parameter for the
model for each species. Only relevant when family = 'NB'.

tau.sq a numeric vector of length n.sp containing the residual variance parameters for
the model for each species. Only relevant for Gaussian or zero-inflated Gaussian
models.

mu.RE a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.mu. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.mu is a

158 simMsAbund

vector of length equal to the number of distinct random intercepts to include in
the model and contains the variances for each random effect. If not specified, no
random effects are included in the model.

offset either a single numeric value, a vector of length J, or a site by replicate matrix
that contains the offset for each data point in the data set.

sp a logical value indicating whether to simulate a spatially-explicit model with a
Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the abundance values. Supported covariance model
key words are: "exponential", "matern", "spherical", and "gaussian".

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

sigma.sq a numeric vector of length n.sp containing the spatial variance parameter for
each species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length n.sp containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n.factors.

nu a numeric vector of length n.sp containing the spatial smoothness parameter
for each species. Only used when sp = TRUE and cov.model = 'matern'. If
factor.model = TRUE, this should be of length n.factors.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

z a matrix with n.sp rows and J columns containing the binary presence/absence
portion of a zero-inflated Gaussian model for each species. Only relevant when
family = 'zi-Gaussian'.

... currently no additional arguments

Value

A list comprised of:

X a three-dimensional numeric design array of covariates with dimensions corre-
sponding to sites, replicates, and number of covariates (including an intercept)
for the model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

simMsAbund 159

w a list of N × J matrices of the spatially-varying coefficients for each species.
Each element of the list corresponds to a different spatially-varying coefficient.
Only used to simulate data when sp = TRUE. If factor.model = TRUE, the first
dimension of each matrix is n.factors.

mu a n.sp x J matrix of the mean abundances for each species at each site.
y a n.sp x J x max(n.rep) array of the raw count data for each species at each

site and replicate combination. Sites with fewer than max(n.rep) replicates
will contain NA values.

X.re a numeric matrix containing the levels of any abundance random effect included
in the model. Only relevant when abundance random effects are specified in
mu.RE.

beta.star a numeric matrix where each row contains the simulated abundance random
effects for each given level of the random effects included in the abundance
model. Only relevant when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

Examples

set.seed(408)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, size = J, replace = TRUE)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(-2, 0.5)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2)
Random effects (two random intercepts)
mu.RE <- list(levels = c(10, 15),

sigma.sq.mu = c(0.43, 0.5))
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- TRUE
n.factors <- 2
factor.model <- TRUE
phi <- runif(n.factors, 3/1, 3 / .1)
kappa <- runif(n.sp, 0.1, 1)

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, kappa = kappa, family = 'NB',
factor.model = factor.model, phi = phi,
cov.model = 'spherical', n.factors = n.factors)

160 simMsDS

simMsDS Simulate Multi-Species Distance Sampling Data

Description

The function simMsDS simulates multi-species distance sampling data for simulation studies, power
assessments, or function testing. Data can be optionally simulated with a spatial Gaussian Process
in the abundance portion of the model, as well as an option to allow for species correlations using
a factor modeling approach. Non-spatial random effects can also be included in the detection or
abundance portions of the model.

Usage

simMsDS(J.x, J.y, n.bins, bin.width, n.sp, beta, alpha,
det.func, transect = 'line', kappa, mu.RE = list(),
p.RE = list(), offset = 1, sp = FALSE, cov.model,
sigma.sq, phi, nu, family = 'Poisson',
factor.model = FALSE, n.factors, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.bins a single numeric value indicating the number of distance bins from which to
generate data.

bin.width a vector of length n.bins indicating the length of each bin. Lengths can be
different for each distance bin or the same across bins.

n.sp a single numeric value indicating the number of species to simulate count data.

beta a numeric matrix with n.sp rows containing the intercept and regression coef-
ficient parameters for the abundance portion of the multi-species hierarchical
distance sampling (HDS) model. Each row corresponds to the regression coef-
ficients for a given species.

alpha a numeric matrix with n.sp rows containing the intercept and regression coeffi-
cient parameters for the detection portion of the multi-species HDS model. Each
row corresponds to the regression coefficients for a given species.

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

simMsDS 161

kappa a numeric vector of length n.sp containing the dispersion parameter for the
abundance portion of the HDS model for each species. Only relevant when
family = 'NB'.

mu.RE a list used to specify the non-spatial random effects included in the abundance
portion of the model. The list must have two tags: levels and sigma.sq.mu.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effect.
sigma.sq.mu is a vector of length equal to the number of distinct random effects
to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the abundance portion of the model.
An optional third tag, beta.indx, is a list that contains integers denoting the
corresponding value of beta that each random effect corresponds to. This allows
specification of random intercepts as well as slopes. By default, all effects are
assumed to be random intercepts.

p.RE a list used to specify the non-spatial random effects included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effects.
sigma.sq.p is a vector of length equal to the number of distinct random effects
to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the detection portion of the model.
An optional third tag, alpha.indx, is a list that contains integers denoting the
corresponding value of alpha that each random effect corresponds to. This
allows specification of random intercepts as well as slopes. By default, all effects
are assumed to be random intercepts.

offset either a single numeric value or a vector of length J that contains the offset for
each location in the data set.

sp a logical value indicating whether to simulate a spatially-explicit model with a
Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent abundance values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric vector of length n.sp containing the spatial variance parameter for
each species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length n.sp containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n.factors.

nu a numeric vector of length n.sp containing the spatial smoothness parameter
for each species. Only used when sp = TRUE and cov.model = 'matern'. If
factor.model = TRUE, this should be of length n.factors.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

162 simMsDS

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

... currently no additional arguments

Value

A list comprised of:

X a J × p.abund numeric design matrix for the abundance portion of the model.

X.p a J × p.abund numeric design matrix for the detection portion of the model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

w a N × J matrix of the spatial random effects for each species. Only used to
simulate data when sp = TRUE. If factor.model = TRUE, the first dimension is
n.factors.

mu a n.sp x J matrix of the expected abundances for each species at each site.

N a n.sp x J matrix of the latent occurrence states for each species at each site.

p a n.sp x J x max(n.rep) array of the detection probabilities for each species at
each site and replicate combination. Sites with fewer than max(n.rep) repli-
cates will contain NA values.

y a n.sp x J x max(n.rep) array of the raw distance sampling data for each species
at each site and and distance bin.

X.p.re a numeric matrix containing the levels of any detection random effect included
in the model. Only relevant when detection random effects are specified in p.RE.

X.re a numeric matrix containing the levels of any abundance random effect included
in the model. Only relevant when abundance random effects are specified in
mu.RE.

alpha.star a numeric matrix where each row contains the simulated detection random ef-
fects for each given level of the random effects included in the detection model.
Only relevant when detection random effects are included in the model.

beta.star a numeric matrix where each row contains the simulated abundance random
effects for each given level of the random effects included in the abundance
model. Only relevant when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

Examples

J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.

simMsNMix 163

n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Number of species
n.sp <- 5
Community-level abundance coefficients
beta.mean <- c(-1, 0.2, 0.3, -0.2)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 0.3, 0.5, 0.4)
Detection coefficients
alpha.mean <- c(-1.0, -0.3)
p.det <- length(alpha.mean)
tau.sq.alpha <- c(0.1, 0.2)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
sp <- FALSE
family <- 'NB'
kappa <- runif(n.sp, 0.3, 3)
offset <- pi * .8^2
transect <- 'line'
factor.model <- FALSE

dat <- simMsDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
n.sp = n.sp, beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp, cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect, factor.model = factor.model)

simMsNMix Simulate Multi-Species Repeated Count Data with Imperfect Detec-
tion

Description

The function simMsNMix simulates multi-species count data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in the
abundance portion of the model, as well as an option to allow for species correlations using a factor
modeling approach. Non-spatial random effects can also be included in the detection or abundance
portions of the model.

164 simMsNMix

Usage

simMsNMix(J.x, J.y, n.rep, n.rep.max, n.sp, beta, alpha, kappa, mu.RE = list(),
p.RE = list(), offset = 1, sp = FALSE, cov.model,
sigma.sq, phi, nu, family = 'Poisson',
factor.model = FALSE, n.factors, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.rep a numeric vector of length J = J.x× J.y indicating the number of repeat visits
at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

n.sp a single numeric value indicating the number of species to simulate count data.

beta a numeric matrix with n.sp rows containing the intercept and regression co-
efficient parameters for the abundance portion of the multi-species N-mixture
model. Each row corresponds to the regression coefficients for a given species.

alpha a numeric matrix with n.sp rows containing the intercept and regression coeffi-
cient parameters for the detection portion of the multi-species N-mixture model.
Each row corresponds to the regression coefficients for a given species.

kappa a numeric vector of length n.sp containing the dispersion parameter for the
abundance portion of the N-mixture model for each species. Only relevant when
family = 'NB'.

mu.RE a list used to specify the non-spatial random effects included in the abundance
portion of the model. The list must have two tags: levels and sigma.sq.mu.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effect.
sigma.sq.mu is a vector of length equal to the number of distinct random effects
to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the abundance portion of the model.
An optional third tag, beta.indx, is a list that contains integers denoting the
corresponding value of beta that each random effect corresponds to. This allows
specification of random intercepts as well as slopes. By default, all effects are
assumed to be random intercepts.

p.RE a list used to specify the non-spatial random effects included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effects.
sigma.sq.p is a vector of length equal to the number of distinct random effects

simMsNMix 165

to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the detection portion of the model.
An optional third tag, alpha.indx, is a list that contains integers denoting the
corresponding value of alpha that each random effect corresponds to. This
allows specification of random intercepts as well as slopes. By default, all effects
are assumed to be random intercepts.

offset either a single numeric value or a vector of length J that contains the offset for
each location in the data set.

sp a logical value indicating whether to simulate a spatially-explicit model with a
Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent abundance values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric vector of length n.sp containing the spatial variance parameter for
each species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length n.sp containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n.factors.

nu a numeric vector of length n.sp containing the spatial smoothness parameter
for each species. Only used when sp = TRUE and cov.model = 'matern'. If
factor.model = TRUE, this should be of length n.factors.

factor.model a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

n.factors a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

... currently no additional arguments

Value

A list comprised of:

X a J × p.abund numeric design matrix for the abundance portion of the model.

X.p a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the N-mixture model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

w a N × J matrix of the spatial random effects for each species. Only used to
simulate data when sp = TRUE. If factor.model = TRUE, the first dimension is
n.factors.

mu a n.sp x J matrix of the expected abundances for each species at each site.

166 simMsNMix

N a n.sp x J matrix of the latent occurrence states for each species at each site.

p a n.sp x J x max(n.rep) array of the detection probabilities for each species at
each site and replicate combination. Sites with fewer than max(n.rep) repli-
cates will contain NA values.

y a n.sp x J x max(n.rep) array of the raw count data for each species at each
site and replicate combination. Sites with fewer than max(n.rep) replicates
will contain NA values.

X.p.re a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.re a numeric matrix containing the levels of any abundance random effect included
in the model. Only relevant when abundance random effects are specified in
mu.RE.

alpha.star a numeric matrix where each row contains the simulated detection random ef-
fects for each given level of the random effects included in the detection model.
Only relevant when detection random effects are included in the model.

beta.star a numeric matrix where each row contains the simulated abundance random
effects for each given level of the random effects included in the abundance
model. Only relevant when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
n.sp <- 10
Community-level covariate effects
Abundance
beta.mean <- c(0.2, -0.15)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
Detection
alpha.mean <- c(0.5, 0.2)
tau.sq.alpha <- c(0.2, 0.3)
p.det <- length(alpha.mean)
mu.RE <- list(levels = c(10, 12),

sigma.sq.mu = c(1.5, 0.3),
beta.indx = list(1, 2))

p.RE <- list(levels = c(15, 10),
sigma.sq.p = c(0.8, 0.5),
alpha.indx = list(1, 2))

Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)

simNMix 167

alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {

alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
factor.model <- TRUE
n.factors <- 3
Spatial parameters if desired
phi <- runif(n.factors, 3/1, 3/.1)
sp <- TRUE
family <- 'Poisson'

dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
alpha = alpha, mu.RE = mu.RE, p.RE = p.RE, sp = TRUE,
cov.model = 'exponential', phi = phi, factor.model = factor.model,
n.factors = n.factors, family = family)

simNMix Simulate Single-Species Count Data with Imperfect Detection

Description

The function simNMix simulates single-species count data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in the
abundance portion of the model. Non-spatial random intercepts/slopes can also be included in the
detection or abundance portions of the N-mixture model.

Usage

simNMix(J.x, J.y, n.rep, n.rep.max, beta, alpha, kappa, mu.RE = list(),
p.RE = list(), offset = 1, sp = FALSE, cov.model, sigma.sq, phi, nu,
family = 'Poisson', ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate count data
along the horizontal axis. Total number of sites with simulated data is J.x×J.y.

J.y a single numeric value indicating the number of sites to simulate count data
along the vertical axis. Total number of sites with simulated data is J.x× J.y.

n.rep a numeric vector of length J = J.x× J.y indicating the number of repeat visits
at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

168 simNMix

beta a numeric vector containing the intercept and regression coefficient parameters
for the abundance portion of the single-species N-mixture model.

alpha a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species N-mixture model.

kappa a single numeric value containing the dispersion parameter for the abundance
portion of the N-mixture model. Only relevant when family = 'NB'.

mu.RE a list used to specify the non-spatial random effects included in the abundance
portion of the model. The list must have two tags: levels and sigma.sq.mu.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effect.
sigma.sq.mu is a vector of length equal to the number of distinct random effects
to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the abundance portion of the model.
An optional third tag, beta.indx, is a list that contains integers denoting the
corresponding value of beta that each random effect corresponds to. This allows
specification of random intercepts as well as slopes. By default, all effects are
assumed to be random intercepts.

p.RE a list used to specify the non-spatial random effects included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random effects to
include in the model and contains the number of levels there are in each effects.
sigma.sq.p is a vector of length equal to the number of distinct random effects
to include in the model and contains the variances for each random effect. If not
specified, no random effects are included in the detection portion of the model.
An optional third tag, alpha.indx, is a list that contains integers denoting the
corresponding value of alpha that each random effect corresponds to. This
allows specification of random intercepts as well as slopes. By default, all effects
are assumed to be random intercepts.

offset either a single numeric value or a vector of length J that contains the offset for
each location in the data set.

sp a logical value indicating whether to simulate a spatially-explicit N-mixture
model with a Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent abundance values. Supported co-
variance model key words are: "exponential", "matern", "spherical", and
"gaussian".

sigma.sq a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

phi a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

nu a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern".

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

... currently no additional arguments

simNMix 169

Value

A list comprised of:

X a J × p.abund numeric design matrix for the abundance portion of the model.

X.p a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the N-mixture model.

coords a J × 2 numeric matrix of coordinates of each site. Required for spatial models.

w a J × 1 matrix of the spatial random effects. Only used to simulate data when
sp = TRUE.

mu a J × 1 matrix of the expected abundance values for each site.

N a length J vector of the latent abundances at each site.

p a J x max(n.rep) matrix of the detection probabilities for each site and repli-
cate combination. Sites with fewer than max(n.rep) replicates will contain NA
values.

y a J x max(n.rep) matrix of the raw count data for each site and replicate com-
bination.

X.p.re a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

X.re a numeric matrix containing the levels of any abundance random effect included
in the model. Only relevant when abundance random effects are specified in
mu.RE.

alpha.star a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.

beta.star a numeric vector that contains the simulated abundance random effects for each
given level of the random effects included in the N-mixture model. Only relevant
when abundance random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>

Examples

set.seed(400)
J.x <- 10
J.y <- 10
n.rep <- rep(4, J.x * J.y)
beta <- c(0.5, -0.15)
alpha <- c(0.7, 0.4)
kappa <- 0.5
phi <- 3 / .6
sigma.sq <- 2

170 spAbund

mu.RE <- list(levels = 10, sigma.sq.mu = 1.2)
p.RE <- list(levels = 15, sigma.sq.p = 0.8)
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

kappa = kappa, mu.RE = mu.RE, p.RE = p.RE, sp = TRUE,
cov.model = 'spherical', sigma.sq = sigma.sq, phi = phi,
family = 'NB')

spAbund Function for Fitting Univariate Spatial Abundance GLMs

Description

The function spAbund fits univariate spatial abundance GLMs.

Usage

spAbund(formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, z,
coords, and offset. y is a vector, matrix, or data frame of the observed count
values. If a vector, the values represent the observed counts at each site. If
multiple replicate observations are obtained at the sites (e.g., sub-samples, re-
peated sampling over multiple seasons), y can be specified as a matrix or data
frame with first dimension equal to the number of sites (J) and second dimen-
sion equal to the maximum number of replicates at a given site. covs is either
a data frame or list containing the variables used in the model. When only fit-
ting a model with site-level data, covs can be specified as a data frame, with
each row corresponding to site and each column corresponding to a variable.
When multiple abundance values are available at a site, covs is specified as a
list, where each list element is a different covariate, which can be site-level or
observation-level. Site-level covariates are specified as a vector of length J ,
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicate observations at a given site. coords is a J × 2 matrix of
the observation coordinates. Note that spAbundance assumes coordinates are
specified in a projected coordinate system. For zero-inflated Gaussian models,

spAbund 171

the tag z is used to specify the binary component of the zero-inflated model and
should have the same length as y. offset is an offset to use in the abundance
model (e.g., an area offset). This can be either a single value, a vector with an
offset for each site (e.g., if survey area differed in size), or a site x replicate
matrix if more than one count is available at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, kappa, sigma.sq.mu, tau.sq. nu is only specified if
cov.model = "matern", sigma.sq.mu is only specified if there are random ef-
fects in formula, and kappa is only specified when family = 'NB'. tau.sq is
only specified when family = 'Gaussian' or family = 'zi-Gaussian'. The
value portion of each tag is the parameter’s initial value. See priors descrip-
tion for definition of each parameter name. Additionally, the tag fix can be set
to TRUE to fix the starting values across all chains. If fix is not specified (the
default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
phi.unif, sigma.sq.ig, nu.unif, kappa.unif, sigma.sq.mu.ig, tau.sq.ig.
Abundance (beta) regression coefficients are assumed to follow a normal dis-
tribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if
priors are the same for all coefficients. If not specified, prior means are set to
0 and prior variances are set to 100. The spatial variance parameter, sigma.sq,
is assumed to follow an inverse-Gamma distribution. The spatial decay phi,
spatial smoothness nu, and negative binomial dispersion kappa parameters are
assumed to follow Uniform distributions. The hyperparameters of the inverse-
Gamma for sigma.sq are passed as a vector of length two, with the first and
second elements corresponding to the shape and scale, respectively. The hyper-
parameters of the Uniform are also passed as a vector of length two with the
first and second elements corresponding to the lower and upper support, respec-
tively. sigma.sq.mu are the random effect variances for any random effects,
and are assumed to follow an inverse-Gamma distribution. The hyperparame-
ters of the inverse-Gamma distribution are passed as a list of length two with
the first and second elements corresponding to the shape and scale parameters,
respectively, which are each specified as vectors of length equal to the number
of random effects or of length one if priors are the same for all random effect
variances. tau.sq is the residual variance for Gaussian (or zero-inflated Gaus-
sian) models, and it is assigned an inverse-Gamma prior. The hyperparameters
of the inverse-Gamma are passed as a vector of length two, with the first and
second element corresponding to the shape and scale parameters, respectively.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name, whose value defines
the initial variance of the adaptive sampler. Valid tags include beta, alpha,
beta.star (the abundance random effect values), kappa, phi, and nu. See
Roberts and Rosenthal (2009) for details. Note that only phi and nu are the only
parameters that require tuning for a Gaussian or zero-inflated Gaussian model.

172 spAbund

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a full GP may be addded in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial), 'Poisson', 'Gaussian', and 'zi-Gaussian'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.
n.burn the number of samples out of the total n.batch * batch.length samples in

each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.
save.fitted logical value indicating whether or not fitted values and likelihood values should

be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

spAbund 173

... currently no additional arguments

Value

An object of class spAbund that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.
Only included when family = 'Gaussian' or family = 'zi-Gaussian'.

y.rep.samples a two or three-dimensional object of posterior samples for the abundance repli-
cate (fitted) values with dimensions corresponding to MCMC samples, site, and
replicate.

mu.samples a two or -three-dimensional array of posterior samples for the expected abun-
dance samples with dimensions corresponding to MCMC samples, site, and
replicate.

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.
sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the model. Only included if random effects are specified in formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091

174 spAbund

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Examples

set.seed(888)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.abund <- length(beta)
mu.RE <- list(levels = c(50, 45),

sigma.sq.mu = c(1.3, 0.5),
beta.indx = c(1, 2))

phi <- 3/.6
sigma.sq <- 2
kappa <- 0.2
sp <- TRUE
cov.model <- 'exponential'
family <- 'NB'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, phi = phi,
sigma.sq = sigma.sq, cov.model = cov.model, family = 'NB')

y <- dat$y
X <- dat$X
X.re <- dat$X.re
coords <- dat$coords

covs <- list(int = X[, , 1],
abund.cov.1 = X[, , 2],
abund.cov.2 = X[, , 3],
abund.cov.3 = X[, , 4],
abund.factor.1 = X.re[, , 1],
abund.factor.2 = X.re[, , 2])

data.list <- list(y = y, covs = covs, coords = coords)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 100),

phi.unif = c(3 / 1, 3 / .1),
sigma.sq.ig = c(2, 1),
kappa.unif = c(0.001, 10))

Starting values
inits.list <- list(beta = beta, kappa = kappa, sigma.sq = sigma.sq, phi = phi)

tuning <- list(phi = 0.3, kappa = 0.05, beta = 0.1, beta.star = 0.1, w = 0.1)
n.batch <- 4

https://doi.org/10.1080/10618600.2018.1537924

spDS 175

batch.length <- 25
n.burn <- 20
n.thin <- 1
n.chains <- 1

out <- spAbund(formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3 +
(1 | abund.factor.1) + (abund.cov.1 | abund.factor.2),

data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
tuning = tuning,
priors = prior.list,
NNGP = TRUE,
cov.model = 'exponential',
search.type = 'cb',
n.neighbors = 5,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

spDS Function for Fitting Single-Species Spatially-Explicit Hierarchical
Distance Sampling Models

Description

Function for fitting single-sepcies spatially-explicit hierarchical distance sampling models. Spatial
models are fit using Nearest Neighbor Gaussian Processes.

Usage

spDS(abund.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
transect = 'line', det.func = 'halfnormal',
n.omp.threads = 1, verbose = TRUE,
n.report = 100, n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

176 spDS

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and slopes are allowed using lme4 syntax
(Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
dist.breaks, and offset. y is a matrix or data frame of the observed count
values, with first dimension equal to the number of sites (J) and second di-
mension equal to the number of distance bins. covs is a matrix or data frame
containing the variables used in the abundance and/or the detection portion of
the model, with J rows for each column (variable). dist.breaks is a vector
of distances that denote the breakpoints of the distance bands. dist.breaks
should have length equal to the number of columns in y plus one. offset is an
offset that can be used to scale estimates from abundance per transect to density
per some desired unit of measure. This can be either a single value or a vector
with an offset value for each site (e.g., if transects differ in length). coords is a
J × 2 matrix of the observation coordinates. Note that spAbundance assumes
coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are N, beta,
alpha, kappa, sigma.sq, phi, w, nu, sigma.sq.mu, and sigma.sq.p. The
value portion of each tag is the parameter’s initial value. sigma.sq.mu and
sigma.sq.p are only relevant when including random effects in the abundance
and detection portion of the abundance model, respectively. kappa is only rel-
evant when family = 'NB'. nu is only specified if cov.model = "matern". See
priors description for definition of each parameter name. Additionally, the tag
fix can be set to TRUE to fix the starting values across all chains. If fix is not
specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, kappa.unif, phi.unif, sigma.sq.ig, nu.unif, sigma.sq.mu.ig,
and sigma.sq.p.ig. Abundance (beta) and detection (alpha) regression co-
efficients are assumed to follow a normal distribution. The hyperparameters of
the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If not
specified, prior means are set to 0 and prior variances set to 100. The spatial vari-
ance parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution.
The spatial decay phi, spatial smoothness nu, and negative binomial dispersion
kappa parameters are assumed to follow Uniform distributions. The hyperpa-
rameters of the inverse-Gamma for sigma.sq are passed as a vector of length
two, with the first and second elements corresponding to the shape and scale,
respectively. The hyperparameters of the Uniform are also passed as a vector
of length two with the first and second elements corresponding to the lower and

spDS 177

upper support, respectively. sigma.sq.mu and sigma.sq.p are the random ef-
fect variances for any abundance or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts/slopes or of length one if priors are the same for all random effect
variances.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name, whose value defines
the initial variance of the adpative sampler. Valid tags include beta, alpha,
beta.star (the abundance random effect values), alpha.star (the detection
random effect values), kappa, phi, nu, and w. See Roberts and Rosenthal (2009)
for details.

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a Gaussian Process may be addded in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

transect the type of transect. Currently supports line transects ('line') or circular tran-
sects (i.e., point counts; 'point').

det.func the detection model used to describe how detection probability varies with dis-
tance. In other software, this is often referred to as the key function. Currently
supports two functions: half normal ('halfnormal') and negative exponential
('negexp').

178 spDS

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class spDS that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

N.samples a coda object of posterior samples for the latent abundance values. Note that
these values always represent transect-level abundance, even when an offset is
supplied.

mu.samples a coda object of posterior samples for the latent expected abundance values.
When an offset is supplied in the data object, these correspond to expected
abundance per unit area (i.e., density).

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.
sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

spDS 179

y.rep.samples a three-dimensional array of fitted values. Array dimensions correspond to
MCMC samples, sites, and distance band.

pi.samples a three-dimensional array of cell-specific detection probabilities. Array dimen-
sions correspond to MCMC samples, sites, and distance band.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Royle, J. A., Dawson, D. K., & Bates, S. (2004). Modeling abundance effects in distance sampling.
Ecology, 85(6), 1591-1597.

Examples

set.seed(123)
J.x <- 10
J.y <- 10
J <- J.x * J.y
Number of distance bins from which to simulate data.
n.bins <- 5
Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

180 spDS

sp <- TRUE
phi <- 3 / .5
sigma.sq <- 0.8
cov.model <- 'exponential'
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'

dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp,
offset = offset, transect = transect, phi = phi, sigma.sq = sigma.sq,
cov.model = cov.model)

y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
dist.breaks <- dat$dist.breaks
coords <- dat$coords

covs <- cbind(X, X.p)
colnames(covs) <- c('int.abund', 'abund.cov.1', 'abund.cov.2', 'abund.cov.3',

'int.det', 'det.cov.1')

data.list <- list(y = y,
covs = covs,
dist.breaks = dist.breaks,
coords = coords,
offset = offset)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 10),

alpha.normal = list(mean = 0,
var = 10),

kappa.unif = c(0, 100),
phi.unif = c(3 / 1, 3 / .1),
sigma.sq.ig = c(2, 1))

Starting values
inits.list <- list(alpha = 0,

beta = 0,
kappa = 1,
phi = 3 / .5,
sigma.sq = 1)

Tuning values
tuning <- list(beta = 0.1, alpha = 0.1, beta.star = 0.3, alpha.star = 0.1,

kappa = 0.2, phi = 1, w = 1)

out <- spDS(abund.formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3,
det.formula = ~ det.cov.1,
data = data.list,

spNMix 181

n.batch = 10,
batch.length = 25,
inits = inits.list,
family = 'NB',
det.func = 'halfnormal',
transect = 'point',
cov.model = 'exponential',
NNGP = TRUE,

n.neighbors = 5,
tuning = tuning,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 100,
n.burn = 100,
n.thin = 1,
n.chains = 1)

summary(out)

spNMix Function for Fitting Single-Species Spatial N-Mixture Models

Description

The function spNMix fits single-species spatial N-mixture models. Spatial models are fit using
Nearest Neighbor Gaussian Processes.

Usage

spNMix(abund.formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb',
n.batch, batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, ...)

Arguments

abund.formula a symbolic description of the model to be fit for the abundance portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts and random slopes are allowed using lme4
syntax (Bates et al. 2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts and random slopes are allowed using
lme4 syntax (Bates et al. 2015).

182 spNMix

data a list containing data necessary for model fitting. Valid tags are y, abund.covs,
det.covs, offset, and coords. y is the count data matrix or data frame with
first dimension equal to the number of sites (J) and second dimension equal to
the maximum number of replicates at a given site. abund.covs is a matrix or
data frame containing the variables used in the abundance portion of the model,
with J rows for each column (variable). det.covs is a list of variables included
in the detection portion of the model. Each list element is a different detection
covariate, which can be site-level or observational-level. Site-level covariates
are specified as a vector of length J while observation-level covariates are spec-
ified as a matrix or data frame with the number of rows equal to J and number of
columns equal to the maximum number of replicates at a given site. coords is
a J × 2 matrix of the observation coordinates. Note that spAbundance assumes
coordinates are specified in a projected coordinate system. offset is an offset
to use in the abundance model (e.g., an area offset). This can be either a single
value or a vector with an offset for each site (e.g., if survey area differed in size).

inits a list with each tag corresponding to a parameter name. Valid tags are N, beta,
alpha, sigma.sq, phi, w, nu, kappa, sigma.sq.mu, sigma.sq.p. nu is only
specified if cov.model = "matern", sigma.sq.p is only specified if there are
random effects in det.formula, sigma.sq.mu is only specified if there are ran-
dom effects in abund.formula, and kappa is only specified when family =
'NB'. The value portion of each tag is the parameter’s initial value. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, nu.unif, kappa.unif, sigma.sq.mu.ig,
and sigma.sq.p.ig. Abundance (beta) and detection (alpha) regression co-
efficients are assumed to follow a normal distribution. The hyperparameters of
the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If
not specified, prior means are set to 0 and prior variances for abundance coeffi-
cients are set to 100 and for detection coefficients set to 2.72. The spatial vari-
ance parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution.
The spatial decay phi, spatial smoothness nu, and negative binomial dispersion
kappa parameters are assumed to follow Uniform distributions. The hyperpa-
rameters of the inverse-Gamma for sigma.sq are passed as a vector of length
two, with the first and second elements corresponding to the shape and scale,
respectively. The hyperparameters of the Uniform are also passed as a vector of
length two with the first and second elements corresponding to the lower and up-
per support, respectively. sigma.sq.mu and sigma.sq.p are the random effect
variances for any abundance or detection random effects, respectively, and are
assumed to follow an inverse-Gamma distribution. The hyperparameters of the
inverse-Gamma distribution are passed as a list of length two with the first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts/slopes or of length one if priors are the same for all random effect

spNMix 183

variances.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name, whose value corresponds
to the initial tuning variance of the adaptive sampler for beta, alpha, beta.star
(the abundance random effect values), alpha.star (the detection random effect
values), kappa, phi, nu, and w. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a Gaussian Process may be addded in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial) and 'Poisson'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

184 spNMix

n.chains the number of MCMC chains to run in sequence.

... currently no additional arguments

Value

An object of class spNMix that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

N.samples a coda object of posterior samples for the latent abundance values

mu.samples a coda object of posterior samples for the latent expected abundance values

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random intercepts/slopes
included in the abundance portion of the model. Only included if random effects
are specified in abund.formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random effects included in
the detection portion of the model. Only included if random effects are specified
in det.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

alpha.star.samples

a coda object of posterior samples for the detection random effects. Only in-
cluded if random effects are specified in det.formula.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability values are not included in the model object, but can be
extracted using fitted().

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

spNMix 185

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60(1), 108-115.

Examples

set.seed(350)
Simulate Data ---
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0.5, 1.5)
p.abund <- length(beta)
alpha <- c(0.5, 1.2, -0.5)
p.det <- length(alpha)
mu.RE <- list()
p.RE <- list()
phi <- runif(1, 3 / 1, 3 / .1)
sigma.sq <- runif(1, 0.2, 1.5)
kappa <- 0.5
sp <- TRUE
cov.model <- 'exponential'
dat <- simNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,

kappa = kappa, mu.RE = mu.RE, p.RE = p.RE, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = cov.model,
family = 'NB')

y <- dat$y
X <- dat$X
X.re <- dat$X.re
X.p <- dat$X.p
X.p.re <- dat$X.p.re
coords <- dat$coords

abund.covs <- X
colnames(abund.covs) <- c('int', 'abund.cov.1')

det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

186 summary.abund

data.list <- list(y = y,
abund.covs = abund.covs,
det.covs = det.covs,
coords = coords)

Priors
prior.list <- list(beta.normal = list(mean = rep(0, p.abund),

var = rep(100, p.abund)),
alpha.normal = list(mean = rep(0, p.det),

var = rep(2.72, p.det)),
kappa.unif = c(0, 10))

Starting values
inits.list <- list(alpha = alpha,

beta = beta,
kappa = kappa,
w = rep(0, J),
phi = 3 / 0.5,
sigma.sq = 1,
N = apply(y, 1, max, na.rm = TRUE))

Tuning values
tuning.list <- list(phi = 0.5, kappa = 0.5, beta = 0.1, alpha = 0.1, w = 0.1)

n.batch <- 4
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- spNMix(abund.formula = ~ abund.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
NNGP = TRUE,
cov.model = 'spherical',
n.neighbors = 10,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

summary.abund Methods for abund Object

summary.DS 187

Description

Methods for extracting information from fitted univariate GLMMs (abund).

Usage

S3 method for class 'abund'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'abund'
print(x, ...)
S3 method for class 'abund'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class abund.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class abund, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a abund object.

summary.DS Methods for DS Object

Description

Methods for extracting information from fitted single-species hierarchiacl distance sampling (DS)
models.

188 summary.lfMsAbund

Usage

S3 method for class 'DS'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'DS'
print(x, ...)
S3 method for class 'DS'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class DS.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "alpha", "alpha.star", "sigma.sq.p".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class DS, including methods to the
generic functions print, summary, and plot.

Value

No return value, called to display summary information of a DS object.

summary.lfMsAbund Methods for lfMsAbund Object

Description

Methods for extracting information from fitted latent factor multivariate abundance GLMMs (lfMsAbund).

Usage

S3 method for class 'lfMsAbund'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'lfMsAbund'
print(x, ...)
S3 method for class 'lfMsAbund'
plot(x, param, density = TRUE, ...)

summary.lfMsDS 189

Arguments

object, x object of class lfMsAbund.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "beta.comm", "tau.sq.beta", "lambda".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class lfMsAbund, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a lfMsAbund object.

summary.lfMsDS Methods for lfMsDS Object

Description

Methods for extracting information from fitted latent factor multi-species hierarchical distance sam-
pling (lfMsDS) model.

Usage

S3 method for class 'lfMsDS'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'lfMsDS'
print(x, ...)
S3 method for class 'lfMsDS'
plot(x, param, density = TRUE, ...)

190 summary.lfMsNMix

Arguments

object, x object of class lfMsDS.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class lfMsDS, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a lfMsDS object.

summary.lfMsNMix Methods for lfMsNMix Object

Description

Methods for extracting information from fitted latent factor multi-species N-mixture (lfMsNMix)
model.

Usage

S3 method for class 'lfMsNMix'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'lfMsNMix'
print(x, ...)
S3 method for class 'lfMsNMix'
plot(x, param, density = TRUE, ...)

summary.msAbund 191

Arguments

object, x object of class lfMsNMix.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class lfMsNMix, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a lfMsNMix object.

summary.msAbund Methods for msAbund Object

Description

Methods for extracting information from fitted multivariate abundance GLMMs (msAbund).

Usage

S3 method for class 'msAbund'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'msAbund'
print(x, ...)
S3 method for class 'msAbund'
plot(x, param, density = TRUE, ...)

192 summary.msDS

Arguments

object, x object of class msAbund.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "beta.comm", "tau.sq.beta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class msAbund, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a msAbund object.

summary.msDS Methods for msDS Object

Description

Methods for extracting information from fitted multi-species hierarchical distance sampling (msDS)
model.

Usage

S3 method for class 'msDS'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'msDS'
print(x, ...)
S3 method for class 'msDS'
plot(x, param, density = TRUE, ...)

summary.msNMix 193

Arguments

object, x object of class msDS.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class msDS, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a msDS object.

summary.msNMix Methods for msNMix Object

Description

Methods for extracting information from fitted multi-species N-mixture (msNMix) model.

Usage

S3 method for class 'msNMix'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'msNMix'
print(x, ...)
S3 method for class 'msNMix'
plot(x, param, density = TRUE, ...)

194 summary.NMix

Arguments

object, x object of class msNMix.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class msNMix, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a msNMix object.

summary.NMix Methods for NMix Object

Description

Methods for extracting information from fitted single-species N-mixture (NMix) model.

Usage

S3 method for class 'NMix'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'NMix'
print(x, ...)
S3 method for class 'NMix'
plot(x, param, density = TRUE, ...)

summary.sfMsAbund 195

Arguments

object, x object of class NMix.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "alpha", "alpha.star", "sigma.sq.p".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class NMix, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a NMix object.

summary.sfMsAbund Methods for sfMsAbund Object

Description

Methods for extracting information from fitted spatial factor multivariate abundance GLMMs (sfMsAbund).

Usage

S3 method for class 'sfMsAbund'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'sfMsAbund'
print(x, ...)
S3 method for class 'sfMsAbund'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class sfMsAbund.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

196 summary.sfMsDS

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "beta.comm", "tau.sq.beta", "lambda",
"theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class sfMsAbund, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a sfMsAbund object.

summary.sfMsDS Methods for sfMsDS Object

Description

Methods for extracting information from fitted spatial multi-species hierarchical distance sampling
(sfMsDS) model.

Usage

S3 method for class 'sfMsDS'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'sfMsDS'
print(x, ...)
S3 method for class 'sfMsDS'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class sfMsDS.
level a quoted keyword that indicates the level to summarize the model results. Valid

key words are: "community", "species", or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
param parameter name for which to generate a traceplot. Valid names are "beta",

"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

summary.sfMsNMix 197

Details

A set of standard extractor functions for fitted model objects of class sfMsDS, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a sfMsDS object.

summary.sfMsNMix Methods for sfMsNMix Object

Description

Methods for extracting information from fitted spatial factor multi-species N-mixture (sfMsNMix)
model.

Usage

S3 method for class 'sfMsNMix'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'sfMsNMix'
print(x, ...)
S3 method for class 'sfMsNMix'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class sfMsNMix.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "beta.comm", "tau.sq.beta", "alpha", "alpha.star",
"sigma.sq.p", "alpha.comm", "tau.sq.alpha", "lambda", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class sfMsNMix, including methods
to the generic functions print, summary, and plot.

198 summary.spAbund

Value

No return value, called to display summary information of a sfMsNMix object.

summary.spAbund Methods for spAbund Object

Description

Methods for extracting information from fitted univariate spatially-explicit GLMMs (spAbund).

Usage

S3 method for class 'spAbund'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'spAbund'
print(x, ...)
S3 method for class 'spAbund'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spAbund.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spAbund, including methods
to the generic functions print, summary, plot.

Value

No return value, called to display summary information of a spAbund object.

summary.spDS 199

summary.spDS Methods for spDS Object

Description

Methods for extracting information from fitted single-species spatial hierarchiacl distance sampling
(spDS) models.

Usage

S3 method for class 'spDS'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'spDS'
print(x, ...)
S3 method for class 'spDS'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spDS.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spDS, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a spDS object.

200 summary.spNMix

summary.spNMix Methods for spNMix Object

Description

Methods for extracting information from fitted single-species spatial N-mixture (spNMix) models.

Usage

S3 method for class 'spNMix'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'spNMix'
print(x, ...)
S3 method for class 'spNMix'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class spNMix.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "alpha", "alpha.star", "sigma.sq.p", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class spNMix, including methods to
the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a spNMix object.

summary.svcAbund 201

summary.svcAbund Methods for svcAbund Object

Description

Methods for extracting information from fitted univariate spatially-varying coefficient GLMMs
(svcAbund).

Usage

S3 method for class 'svcAbund'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'svcAbund'
print(x, ...)
S3 method for class 'svcAbund'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcAbund.

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcAbund, including methods
to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcAbund object.

202 summary.svcMsAbund

summary.svcMsAbund Methods for svcMsAbund Object

Description

Methods for extracting information from fitted multivariate spatially-varying coefficient abundance
GLMMs (svcMsAbund).

Usage

S3 method for class 'svcMsAbund'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
S3 method for class 'svcMsAbund'
print(x, ...)
S3 method for class 'svcMsAbund'
plot(x, param, density = TRUE, ...)

Arguments

object, x object of class svcMsAbund.

level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community", "species", or "both".

quantiles for summary, posterior distribution quantiles to compute.

digits for summary, number of digits to report.

param parameter name for which to generate a traceplot. Valid names are "beta",
"beta.star", "sigma.sq.mu", "tau.sq", "beta.comm", "tau.sq.beta", "lambda",
"theta".

density logical value indicating whether to also generate a density plot for each param-
eter in addition to the MCMC traceplot.

... currently no additional arguments

Details

A set of standard extractor functions for fitted model objects of class svcMsAbund, including meth-
ods to the generic functions print, summary, and plot.

Value

No return value, called to display summary information of a svcMsAbund object.

svcAbund 203

svcAbund Function for Fitting Univariate Spatialy-Varying Coefficient GLMMs

Description

The function svcAbund fits univariate spatially-varying coefficient GLMMs.

Usage

svcAbund(formula, data, inits, priors, tuning,
svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, family = 'Poisson',
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, save.fitted = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, z,
coords, and offset. y is a vector, matrix, or data frame of the observed count
values. If a vector, the values represent the observed counts at each site. If
multiple replicate observations are obtained at the sites (e.g., sub-samples, re-
peated sampling over multiple seasons), y can be specified as a matrix or data
frame with first dimension equal to the number of sites (J) and second dimen-
sion equal to the maximum number of replicates at a given site. covs is either
a data frame or list containing the variables used in the model. When only fit-
ting a model with site-level data, covs can be specified as a data frame, with
each row corresponding to site and each column corresponding to a variable.
When multiple abundance values are available at a site, covs is specified as a
list, where each list element is a different covariate, which can be site-level or
observation-level. Site-level covariates are specified as a vector of length J ,
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicate observations at a given site. coords is a J × 2 matrix of
the observation coordinates. Note that spAbundance assumes coordinates are
specified in a projected coordinate system. For zero-inflated Gaussian models,
the tag z is used to specify the binary component of the zero-inflated model and
should have the same length as y. offset is an offset to use in the abundance
model (e.g., an area offset). This can be either a single value, a vector with an
offset for each site (e.g., if survey area differed in size), or a site x replicate
matrix if more than one count is available at a given site.

204 svcAbund

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, tau.sq, sigma.sq.mu, kappa. nu is only specified if
cov.model = "matern", sigma.sq.mu is only specified if there are random ef-
fects in formula, and The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
phi.unif, sigma.sq.ig, nu.unif, tau.sq.ig, sigma.sq.mu.ig, kappa.unif.
Abundance (beta) regression coefficients are assumed to follow a normal dis-
tribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if
priors are the same for all coefficients. If not specified, prior means are set to
0 and prior variances are set to 100. The spatial variance parameter, sigma.sq,
and the Gaussian residual variance parameter, tau.sq, are assumed to follow an
inverse-Gamma distribution. The spatial decay phi and spatial smoothness nu,
parameters are assumed to follow Uniform distributions. The hyperparameters
of the inverse-Gamma for sigma.sq is passed as a list of length two with the
first and second elements corresponding to the shape and scale parameters of
the inverse-Gamma distribution either for each spatially-varying coefficient, or
a single value if assuming the same values for all spatially-varying coefficients.
The hyperparameters of the inverse-Gamma for tau.sq is passed as a vector
of length two, with the first and second elements corresponding to the shape
and scale, respectively. The hyperparameters of the Uniform are also passed
as a list of length two with the first and second elements corresponding to the
lower and upper support, respectively, for each SVC or a single value if giv-
ing the same prior for each SVC. sigma.sq.mu are the random effect variances
for any random effects, and are assumed to follow an inverse-Gamma distribu-
tion. The hyperparameters of the inverse-Gamma distribution are passed as a
list of length two with the first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random effects or of length one if priors are the same for
all random effect variances. The negative binomial dispersion parameter kappa
is assumed to follow a Uniform distribution. The hyperparameters of the Uni-
form are passed as a vector of length two with the first and second elements
corresponding to the lower and upper support, respectively.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names cor-
responding to variable names in occ.covs (for the intercept, use ’(Intercept)’).
svc.cols default argument of 1 results in a univariate spatial GLMM analogous
to spAbund (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

svcAbund 205

words are: "exponential", "matern", "spherical", and "gaussian".

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial variance of the adaptive sampler. Valid tags are phi and nu. See Roberts
and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. See Datta et al. (2016) and Finley et al.
(2019) for more information. Currently only NNGP is supported, functionality
for a full GP may be addded in future package development.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for the latent abundance process. Currently supports 'NB'
(negative binomial), 'Poisson', 'Gaussian', and 'zi-Gaussian'. Default is
Poisson.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch * batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.

206 svcAbund

save.fitted logical value indicating whether or not fitted values and likelihood values should
be saved in the resulting model object. If save.fitted = FALSE, the compo-
nents y.rep.samples, mu.samples, and like.samples will not be included in
the model object, and subsequent functions for calculating WAIC, fitted values,
and posterior predictive checks will not work, although they all can be calculated
manually if desired. Setting save.fitted = FALSE can be useful when working
with very large data sets to minimize the amount of RAM needed when fitting
and storing the model object in memory.

... currently no additional arguments

Value

An object of class svcAbund that is a list comprised of:

beta.samples a coda object of posterior samples for the abundance regression coefficients.

tau.sq.samples a coda object of posterior samples for the residual variance parameter.

kappa.samples a coda object of posterior samples for the abundance dispersion parameter. Only
included when family = 'NB'.

y.rep.samples a two or three-dimensional object of posterior samples for the abundance repli-
cate (fitted) values with dimensions corresponding to MCMC samples, site, and
replicate.

mu.samples a two or -three-dimensional array of posterior samples for the expected abun-
dance samples with dimensions corresponding to MCMC samples, site, and
replicate.

theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a three-dimensional array of posterior samples for the spatially-varying coeffi-
cients with dimensions corresponding to MCMC sample, SVC, and site.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the model. Only included if random effects are specified in formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

svcAbund 207

References

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Examples

set.seed(1000)
Sites
J.x <- 10
J.y <- 10
J <- J.x * J.y
Abundance ---------------------------
beta <- c(5, 0.5, -0.2, 0.75)
p <- length(beta)
mu.RE <- list()
mu.RE <- list(levels = c(35, 40),

sigma.sq.mu = c(0.7, 1.5),
beta.indx = list(1, 1))

Spatial parameters ------------------
sp <- TRUE
svc.cols <- c(1, 2)
p.svc <- length(svc.cols)
cov.model <- "exponential"
sigma.sq <- runif(p.svc, 0.4, 4)
phi <- runif(p.svc, 3/1, 3/0.6)
tau.sq <- 2
z <- rbinom(J, 1, 0.5)

Get all the data
dat <- simAbund(J.x = J.x, J.y = J.y, beta = beta, tau.sq = tau.sq,

mu.RE = mu.RE, sp = sp, svc.cols = svc.cols,
family = 'zi-Gaussian', cov.model = cov.model,
sigma.sq = sigma.sq, phi = phi, z = z)

Get data in format for spAbundance --------------------------------------
y <- dat$y
X <- dat$X
X.re <- dat$X.re
coords <- dat$coords

Package all data into a list
covs <- cbind(X, X.re)
colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3', 'factor.1', 'factor.2')

https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

208 svcMsAbund

Data list bundle
data.list <- list(y = y, covs = covs, coords = coords, z = z)
Priors
prior.list <- list(beta.normal = list(mean = 0, var = 1000),

sigma.sq.ig = list(a = 2, b = 1), tau.sq = c(2, 1),
sigma.sq.mu.ig = list(a = 2, b = 1),
phi.unif = list(a = 3 / 1, b = 3 / 0.1))

Starting values
inits.list <- list(beta = 0, alpha = 0,

sigma.sq = 1, phi = 3 / 0.5,
tau.sq = 2, sigma.sq.mu = 0.5)

Tuning
tuning.list <- list(phi = 1)

n.batch <- 10
batch.length <- 25
n.burn <- 100
n.thin <- 1

out <- svcAbund(formula = ~ cov.1 + cov.2 + cov.3 +
(1 | factor.1) + (1 | factor.2),

svc.cols = c(1, 2),
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
family = 'zi-Gaussian',
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 3)

svcMsAbund Function for Fitting Spatially-Varying Coefficient Multivariate Abun-
dance GLMMs

Description

The function svcMsAbund fits multivariate spatially-varying coefficient GLMs with species corre-
lations (i.e., a spatially-explicit abundace-based joint species distribution model). We use a spatial
factor modeling approach. Models are implemented using a Nearest Neighbor Gaussian Process.

svcMsAbund 209

Usage

svcMsAbund(formula, data, inits, priors, tuning,
svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors,
n.batch, batch.length, accept.rate = 0.43, family = 'Gaussian',
n.omp.threads = 1, verbose = TRUE, n.report = 100,

n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
...)

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts and slopes are allowed using lme4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, coords,
and z. y is a matrix with sites corresponding to species and columns correspond-
ing to sites. covs is a list, matrix, or data frame of covariates used in the model,
where each column (or list element) represents a different covariate. coords is
a J × 2 matrix of the observation coordinates. Note that spAbundance assumes
coordinates are specified in a projected coordinate system. For zero-inflated
Gaussian models, the tag z is used to specify the binary component of the model
and should have the same dimensions as y.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, sigma.sq.mu, phi, lambda, nu, and tau.sq. nu is only
specified if cov.model = "matern", tau.sq is only specified for Gaussian and
zero-inflated Gaussian models, and sigma.sq.mu is only specified if random
effects are included in formula. The value portion of each tag is the parame-
ter’s initial value. See priors description for definition of each parameter name.
Additionally, the tag fix can be set to TRUE to fix the starting values across all
chains. If fix is not specified (the default), starting values are varied randomly
across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
tau.sq.beta.ig, sigma.sq.mu, phi.unif, nu.unif, and tau.sq.ig. Community-
level (beta.comm) regression coefficients are assumed to follow a normal dis-
tribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors are
the same for all coefficients. If not specified, prior means are set to 0 and prior
variances to 100. Community-level variance parameters (tau.sq.beta) are as-
sumed to follow an inverse Gamma distribution. The hyperparameters of the
inverse gamma distribution are passed as a list of length two with the first and
second elements corresponding to the shape and scale parameters, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or a single value if priors are the same for all parameters. If not specified,
prior shape and scale parameters are set to 0.1. If desired, the species-specific re-
gression coefficients (beta) can also be estimated indepdendently by specifying

210 svcMsAbund

the tag independent.betas = TRUE. If specified, this will not estimate species-
specific coefficients as random effects from a common-community-level distri-
bution, and rather the values of beta.comm and tau.sq.beta will be fixed at
the specified initial values. This is equivalent to specifying a Gaussian, indepen-
dent prior for each of the species-specific effects. The spatial factor model fits
n.factors independent spatial processes. The spatial decay phi and smooth-
ness nu parameters for each latent factor and spatially-varying coefficient are
assumed to follow Uniform distributions. The hyperparameters of the Uniform
are passed as a list with two elements, with both elements being vectors of length
equal to the number of spatial factors times the number of spatially-varying co-
efficients corresponding to the lower and upper support, respectively, or as a
single value if the same value is assigned for all factors and spatially-varying co-
efficients. The priors for the factor loadings matrix lambda are fixed following
the standard spatial factor model to ensure parameter identifiability (Christensen
and Amemlya 2002). The upper triangular elements of the n.sp x n.factors
matrix for each spatially-varying coefficient are fixed at 0 and the diagonal el-
ements are fixed at 1. The lower triangular elements are assigned a standard
normal prior (i.e., mean 0 and variance 1). sigma.sq.mu are the random effect
variances random effects, respectively, and are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse-Gamma distribution
are passed as a list of length two with first and second elements corresponding to
the shape and scale parameters, respectively, which are each specified as vectors
of length equal to the number of random intercepts or of length one if priors are
the same for all random effect variances. tau.sq is the species-specific residual
variance for Gaussian (or zero-inflated Gaussian) models, and it is assigned an
inverse-Gamma prior. The hyperparameters of the inverse-Gamma are passed
as a list of length two, with the first and second element corresponding to the
shape and scale parameters, respectively, which are each specified as vectors of
length equal to the number of species or a single value if priors are the same for
all species.

tuning a list with each tag corresponding to a parameter name, whose value defines the
initial tuning variance of the adaptive sampler for phi and nu. See Roberts and
Rosenthal (2009) for details.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names corre-
sponding to variable names in occ.covs (for the intercept, use '(Intercept)').
svc.cols default argument of 1 results in a spatial factor model analogous to
sfMsAbund (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential", "matern", "spherical", and "gaussian".

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
factor models, only NNGP = TRUE is currently supported.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5

svcMsAbund 211

neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC.

search.type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb" and "brute". The "cb" should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb" and "brute" should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb" and "brute" might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.factors the number of factors to use in the spatial factor model approach for each spatially-
varying coefficient. Typically, the number of factors is set to be small (e.g., 4-5)
relative to the total number of species in the community, which will lead to sub-
stantial decreases in computation time. However, the value can be anywhere
between 1 and the number of species in the modeled community.

n.batch the number of MCMC batches in each chain to run for the adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch to run for the adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

family the distribution to use for abundance. Currently, spatially-varying coefficient
models are available for family = 'Gaussian' and family = 'zi-Gaussian'.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

n.burn the number of samples out of the total n.samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

... currently no additional arguments

Value

An object of class svcMsAbund that is a list comprised of:

212 svcMsAbund

beta.comm.samples

a coda object of posterior samples for the community level regression coeffi-
cients.

tau.sq.beta.samples

a coda object of posterior samples for the abundance community variance pa-
rameters.

beta.samples a coda object of posterior samples for the species level abundance regression
coefficients.

tau.sq.samples a coda object of posterior samples for the Gaussian residual variance parameter.

theta.samples a coda object of posterior samples for the spatial correlation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings for each
spatially-varying coefficient.

y.rep.samples a three or four-dimensional array of posterior samples for the fitted (replicate)
values for each species with dimensions corresponding to MCMC sample, species,
site, and replicate.

mu.samples a three or four-dimensional array of posterior samples for the expected abun-
dance values for each species with dimensions corresponding to MCMC sam-
ples, species, site, and replicate.

w.samples a four-dimensional array of posterior samples for the latent spatial random ef-
fects for each spatial factor within each spatially-varying coefficient. Dimen-
sions correspond to MCMC sample, factor, site, and spatially-varying coeffi-
cient.

sigma.sq.mu.samples

a coda object of posterior samples for variances of random effects included in
the abundance portion of the model. Only included if random effects are speci-
fied in abund.formula.

beta.star.samples

a coda object of posterior samples for the abundance random effects. Only
included if random effects are specified in abund.formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.

run.time MCMC sampler execution time reported using proc.time().

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

svcMsAbund 213

References

Datta, A., S. Banerjee, A.O. Finley, and A.E. Gelfand. (2016) Hierarchical Nearest-Neighbor Gaus-
sian process models for large geostatistical datasets. Journal of the American Statistical Associa-
tion, doi:10.1080/01621459.2015.1044091.

Finley, A.O., A. Datta, B.D. Cook, D.C. Morton, H.E. Andersen, and S. Banerjee. (2019) Effi-
cient algorithms for Bayesian Nearest Neighbor Gaussian Processes. Journal of Computational
and Graphical Statistics, doi:10.1080/10618600.2018.1537924.

Roberts, G.O. and Rosenthal J.S. (2009) Examples of adaptive MCMC. Journal of Computational
and Graphical Statistics, 18(2):349-367.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.

Christensen, W. F., and Amemiya, Y. (2002). Latent variable analysis of multivariate spatial data.
Journal of the American Statistical Association, 97(457), 302-317.

Examples

set.seed(332)
J.x <- 10
J.y <- 10
J <- J.x * J.y
n.rep <- rep(1, J)
n.sp <- 6
Community-level covariate effects
beta.mean <- c(0, 0.25, 0.6)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.2, 1.2, 0.4)
Random effects
mu.RE <- list()
Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
for (i in 1:p.abund) {

beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
sp <- TRUE
svc.cols <- c(1, 2)
n.factors <- 2
q.p.svc <- length(svc.cols) * n.factors
factor.model <- TRUE
phi <- runif(q.p.svc, 3/1, 3 / .4)
tau.sq <- runif(n.sp, 0.1, 5)
cov.model <- 'exponential'
family <- 'Gaussian'

dat <- simMsAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
mu.RE = mu.RE, sp = sp, tau.sq = tau.sq, family = family,
factor.model = factor.model, phi = phi,
cov.model = cov.model, n.factors = n.factors,
svc.cols = svc.cols)

y <- dat$y

https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924
https://doi.org/10.18637/jss.v067.i01

214 waicAbund

X <- dat$X
coords <- dat$coords

covs <- data.frame(abund.cov.1 = X[, 2],
abund.cov.2 = X[, 3])

data.list <- list(y = y, covs = covs, coords = coords)
prior.list <- list(beta.comm.normal = list(mean = 0, var = 100),

tau.sq.ig = list(a = 2, b = 2),
phi.unif = list(a = 3 / 1, b = 3 / .1),

tau.sq.beta.ig = list(a = .1, b = .1))
inits.list <- list(beta.comm = 0,

beta = 0,
tau.sq = 1,
tau.sq.beta = 1,
phi = 3 / 0.5)

tuning.list <- list(phi = 0.5)

n.batch <- 5
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- svcMsAbund(formula = ~ abund.cov.1 + abund.cov.2,
data = data.list,
n.batch = n.batch,
inits = inits.list,
priors = prior.list,
tuning = tuning.list,
NNGP = TRUE,
svc.cols = c(1, 2),
family = 'Gaussian',
cov.model = 'exponential',
n.neighbors = 5,
n.factors = n.factors,
batch.length = batch.length,
n.omp.threads = 1,
verbose = TRUE,
n.report = 20,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

summary(out)

waicAbund Compute Widely Applicable Information Criterion for spAbundance
Model Objects

waicAbund 215

Description

Function for computing the Widely Applicable Information Criterion (WAIC; Watanabe 2010) for
spAbundance model objects.

Usage

waicAbund(object, N.max, by.species = FALSE, ...)

Arguments

object an object of class NMix, spNMix, msNMix, lfMsNMix, sfMsNMix, abund, spAbund,
msAbund, lfMsAbund, sfMsAbund, DS, spDS, msDS, lfMsDS, sfMsDS.

N.max values indicating the upper limit on the latent abundance values when calculat-
ing WAIC for N-mixture models or hierarchical distance sampling models. For
single-species models, this can be a single value or a vector of different values
for each site. For multi-species models, this can be a single value, a vector of
values for each species, or a species by site matrix for a separate value for each
species/site combination. Defaults to ten plus the largest abundance value for
each site/species in the posterior samples object$N.samples.

by.species a logical value indicating whether or not WAIC should be reported individually
for each species (TRUE) or summed across the entire community (FALSE) for
multi-species models. Ignored for single species models.

... currently no additional arguments

Details

The effective number of parameters is calculated following the recommendations of Gelman et al.
(2014).

Value

Returns a vector with three elements corresponding to estimates of the expected log pointwise pre-
dictive density (elpd), the effective number of parameters (pD), and the WAIC. If calculating WAIC
for a multi-species model and by.species = TRUE, this will be a data frame with rows correspond-
ing to the different species.

Note

When fitting zero-inflated Gaussian models, the WAIC is only calculated for the non-zero values.
If fitting a first stage model with spOccupancy to the binary portion of the zero-inflated model, you
can use the spOccupancy::waicOcc function to calculate WAIC for the binary component.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,

216 waicAbund

References

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research, 11:3571-
3594.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. (2013). Bayesian
Data Analysis. 3rd edition. CRC Press, Taylor and Francis Group

Gelman, A., J. Hwang, and A. Vehtari (2014). Understanding predictive information criteria for
Bayesian models. Statistics and Computing, 24:997-1016.

Examples

set.seed(1010)
J.x <- 15
J.y <- 15
J <- J.x * J.y
n.rep <- sample(3, J, replace = TRUE)
beta <- c(0, -1.5, 0.3, -0.8)
p.abund <- length(beta)
mu.RE <- list(levels = c(30), sigma.sq.mu = c(1.3))
kappa <- 0.5
sp <- FALSE
family <- 'NB'
dat <- simAbund(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta,

kappa = kappa, mu.RE = mu.RE, sp = sp, family = 'NB')

y <- dat$y
X <- dat$X
X.re <- dat$X.re

abund.covs <- list(int = X[, , 1],
abund.cov.1 = X[, , 2],
abund.cov.2 = X[, , 3],
abund.cov.3 = X[, , 4],
abund.factor.1 = X.re[, , 1])

data.list <- list(y = y, covs = abund.covs)

Priors
prior.list <- list(beta.normal = list(mean = 0, var = 100),

kappa.unif = c(0.001, 10))
Starting values
inits.list <- list(beta = 0, kappa = kappa)

n.batch <- 5
batch.length <- 25
n.burn <- 0
n.thin <- 1
n.chains <- 1

out <- abund(formula = ~ abund.cov.1 + abund.cov.2 + abund.cov.3 +
(1 | abund.factor.1),

waicAbund 217

data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1,
n.burn = n.burn,
n.thin = n.thin,
n.chains = n.chains)

Calculate WAIC
waicAbund(out)

Index

∗ datasets
bbsData, 8
bbsPredData, 9
dataNMixSim, 10
hbefCount2015, 30
neonDWP, 63
neonPredData, 65

∗ model
fitted.abund, 16
fitted.DS, 17
fitted.lfMsAbund, 18
fitted.lfMsDS, 19
fitted.lfMsNMix, 19
fitted.msAbund, 20
fitted.msDS, 21
fitted.msNMix, 22
fitted.NMix, 23
fitted.sfMsAbund, 24
fitted.sfMsDS, 24
fitted.sfMsNMix, 25
fitted.spAbund, 26
fitted.spDS, 27
fitted.spNMix, 27
fitted.svcAbund, 28
fitted.svcMsAbund, 29
summary.abund, 186
summary.DS, 187
summary.lfMsAbund, 188
summary.lfMsDS, 189
summary.lfMsNMix, 190
summary.msAbund, 191
summary.msDS, 192
summary.msNMix, 193
summary.NMix, 194
summary.sfMsAbund, 195
summary.sfMsDS, 196
summary.sfMsNMix, 197
summary.spAbund, 198
summary.spDS, 199

summary.spNMix, 200
summary.svcAbund, 201
summary.svcMsAbund, 202

abund, 4

bbsData, 8
bbsPredData, 9

dataNMixSim, 10
DS, 12

fitted, 17–29
fitted.abund, 16
fitted.DS, 17
fitted.lfMsAbund, 18
fitted.lfMsDS, 19
fitted.lfMsNMix, 19
fitted.msAbund, 20
fitted.msDS, 21
fitted.msNMix, 22
fitted.NMix, 23
fitted.sfMsAbund, 24
fitted.sfMsDS, 24
fitted.sfMsNMix, 25
fitted.spAbund, 26
fitted.spDS, 27
fitted.spNMix, 27
fitted.svcAbund, 28
fitted.svcMsAbund, 29

hbefCount2015, 30

lfMsAbund, 31
lfMsDS, 36
lfMsNMix, 42

msAbund, 47
msDS, 52
msNMix, 58

218

INDEX 219

neonDWP, 63
neonPredData, 65
NMix, 65

plot, 187–202
plot.abund (summary.abund), 186
plot.DS (summary.DS), 187
plot.lfMsAbund (summary.lfMsAbund), 188
plot.lfMsDS (summary.lfMsDS), 189
plot.lfMsNMix (summary.lfMsNMix), 190
plot.msAbund (summary.msAbund), 191
plot.msDS (summary.msDS), 192
plot.msNMix (summary.msNMix), 193
plot.NMix (summary.NMix), 194
plot.sfMsAbund (summary.sfMsAbund), 195
plot.sfMsDS (summary.sfMsDS), 196
plot.sfMsNMix (summary.sfMsNMix), 197
plot.spAbund (summary.spAbund), 198
plot.spDS (summary.spDS), 199
plot.spNMix (summary.spNMix), 200
plot.svcAbund (summary.svcAbund), 201
plot.svcMsAbund (summary.svcMsAbund),

202
ppcAbund, 70
predict.abund, 72
predict.DS, 75
predict.lfMsAbund, 79
predict.lfMsDS, 82
predict.lfMsNMix, 86
predict.msAbund, 89
predict.msDS, 92
predict.msNMix, 95
predict.NMix, 98
predict.sfMsAbund, 101
predict.sfMsDS, 105
predict.sfMsNMix, 109
predict.spAbund, 113
predict.spDS, 116
predict.spNMix, 120
predict.svcAbund, 124
predict.svcMsAbund, 127
print, 187–202
print.abund (summary.abund), 186
print.DS (summary.DS), 187
print.lfMsAbund (summary.lfMsAbund), 188
print.lfMsDS (summary.lfMsDS), 189
print.lfMsNMix (summary.lfMsNMix), 190
print.msAbund (summary.msAbund), 191
print.msDS (summary.msDS), 192

print.msNMix (summary.msNMix), 193
print.NMix (summary.NMix), 194
print.sfMsAbund (summary.sfMsAbund), 195
print.sfMsDS (summary.sfMsDS), 196
print.sfMsNMix (summary.sfMsNMix), 197
print.spAbund (summary.spAbund), 198
print.spDS (summary.spDS), 199
print.spNMix (summary.spNMix), 200
print.svcAbund (summary.svcAbund), 201
print.svcMsAbund (summary.svcMsAbund),

202

sfMsAbund, 131
sfMsDS, 137
sfMsNMix, 144
simAbund, 151
simDS, 153
simMsAbund, 157
simMsDS, 160
simMsNMix, 163
simNMix, 167
spAbund, 170
spDS, 175
spNMix, 181
summary, 187–202
summary.abund, 186
summary.DS, 187
summary.lfMsAbund, 188
summary.lfMsDS, 189
summary.lfMsNMix, 190
summary.msAbund, 191
summary.msDS, 192
summary.msNMix, 193
summary.NMix, 194
summary.sfMsAbund, 195
summary.sfMsDS, 196
summary.sfMsNMix, 197
summary.spAbund, 198
summary.spDS, 199
summary.spNMix, 200
summary.svcAbund, 201
summary.svcMsAbund, 202
svcAbund, 203
svcMsAbund, 208

waicAbund, 214

	abund
	bbsData
	bbsPredData
	dataNMixSim
	DS
	fitted.abund
	fitted.DS
	fitted.lfMsAbund
	fitted.lfMsDS
	fitted.lfMsNMix
	fitted.msAbund
	fitted.msDS
	fitted.msNMix
	fitted.NMix
	fitted.sfMsAbund
	fitted.sfMsDS
	fitted.sfMsNMix
	fitted.spAbund
	fitted.spDS
	fitted.spNMix
	fitted.svcAbund
	fitted.svcMsAbund
	hbefCount2015
	lfMsAbund
	lfMsDS
	lfMsNMix
	msAbund
	msDS
	msNMix
	neonDWP
	neonPredData
	NMix
	ppcAbund
	predict.abund
	predict.DS
	predict.lfMsAbund
	predict.lfMsDS
	predict.lfMsNMix
	predict.msAbund
	predict.msDS
	predict.msNMix
	predict.NMix
	predict.sfMsAbund
	predict.sfMsDS
	predict.sfMsNMix
	predict.spAbund
	predict.spDS
	predict.spNMix
	predict.svcAbund
	predict.svcMsAbund
	sfMsAbund
	sfMsDS
	sfMsNMix
	simAbund
	simDS
	simMsAbund
	simMsDS
	simMsNMix
	simNMix
	spAbund
	spDS
	spNMix
	summary.abund
	summary.DS
	summary.lfMsAbund
	summary.lfMsDS
	summary.lfMsNMix
	summary.msAbund
	summary.msDS
	summary.msNMix
	summary.NMix
	summary.sfMsAbund
	summary.sfMsDS
	summary.sfMsNMix
	summary.spAbund
	summary.spDS
	summary.spNMix
	summary.svcAbund
	summary.svcMsAbund
	svcAbund
	svcMsAbund
	waicAbund
	Index

